K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=8cm

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: \(\widehat{ABD}=90^0\)

b: Xét ΔAMB và ΔDMC có

MA=MD

MB=MC

AB=DC

Do đó: ΔAMB=ΔDMC

Xét ΔABC và ΔBAD có

BA chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

c: Xét tứ giác AEDF có 

AE//DF

AE=DF

Do đó AEDF là hình bình hành

Suy ra: HAi đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

17 tháng 3 2020

a/ Xét tam giác AMB và tam giác DMC có:

MA= MD( GT)

AMB=CMD( 2 góc đối đỉnh)

MB= MC( M là trung điểm của BC)

=> tam giác AMB= tam giác DMC(c.g.c)

b/ => góc BAM=MDC( theo a)

=> AB// CD( 2 góc ở vị trí sole trong bằng nhau)

c/ Xét tam giác AEM và tam giác AFM có:

AE= EF(GT)

góc EAM= FDM( theo b)

AM= DM( GT)

=> tam giác AEM = tam giác AFM(c.g.c)

Do đó: góc AME= góc DMF

=>góc AME+ AMF= DMF+ AMF

=>EMF= 180 độ

Vậy => E, M, F thẳng hàng.

Xin lỗi ! Bạn có thể tự vẽ hình dc ko?

10 tháng 4 2020

1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)

=> AC2 = BC2 - AB2 = 102 - 82 = 36

=> AC = 6 (cm)

2. Xét △AMB và △DMC 

Có: AM = MD (gt)

     AMB = DMC (2 góc đối đỉnh)

       MB = MC (gt)

=> △AMB = △DMC (c.g.c)

=> MAB = MDC (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DC (dhnb)

Mà AB ⊥ AC

=> CD ⊥ AC (từ vuông góc đến song song)

3. Xét △AHC và △EHC cùng vuông tại H

Có: CH là cạnh chung

       AH = EH (gt)

=> △AHC = △EHC (2cgv)

=> AC = EC (2 cạnh tương ứng)

=> △ACE cân tại C

4, Xét △CAM và △BDM

Có: AM = DM (gt)

    CMA = BMD (2 góc đối đỉnh)

      CM = MB (gt)

=> △CAM = △BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Mà AC = CE (cmt)

=> BD = CE

a) Xét \Delta AMBΔAMB và \Delta DMCΔDMC có:

AB=AC(gt)

AM=MD(gt)

MB=MC(gt)

=>\Delta AMB=\Delta DMC\left(c.c.c\right)ΔAMBDMC(c.c.c)

b) Vì: \Delta AMB=\Delta DMC\left(cmt\right)ΔAMBDMC(cmt)

=> \widehat{MAB}=\widehat{MDC}MAB=MDC . Mà hai góc này ở vị trí sole trong

=>AB//DC

# Study well 'v' 

24 tháng 12 2020

a) Xét \(\Delta AMB\) và \(\Delta DMC\) , ta có: 

AB = AC (gt)

AM=MD (gt)

MD=MC (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.c.c\right)\) 

b) Vì: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB=\widehat{MDC}}\)

\(\Rightarrow AB\) //   \(DC\)

#Chúc bạn học tốt ^^

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

16 tháng 12 2016

A B C D M

a) Xét ΔAMB và ΔDMC có:

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

MB=MC(gt)

=> ΔAMB=ΔDMC(c.g.c)

b)Vì: ΔAMB=ΔDMC(cmt)

=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét ΔABC và ΔDCB có:

BC: cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB=DC(cmt)

=> ΔABC=ΔDCB(c.g.c)

=>AC=BD

\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong

=>AC//BD

Vì: ΔABC=ΔDCB(cmt)

=> \(\widehat{BAC}=\widehat{CDB}=90^o\)