Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng đ/lí Py ta go cho tam giác ABC vuông ở A ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
= 100
=> BC = \(\sqrt{100}=10\left(Cm\right)\)
b) Xét tam giác DAH và tam giác BAH có:
AH chung
HD = HB
Góc H1 = góc H2
Vậy tam giác DAH = tam giác BAH
=> AD = AB (2 cạnh tương ứng)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
A B C D E H
A)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}\)
\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
b)
Xét hai tam giác vuông AHB và AHD, có:
AH là cạch chung
HB=HD (gt)
Vậy hai tam giác đó bằng nhau(c.g.c)
=> AB=AD ( hai cạnh tương ứng)
c)Xét tứ giác ABDE có
AH vuông góc BD
và AE cắt BD tại trung điểm mỗi đường
=> tứ giác ABDE là hình thoi
=> AB //DE
mà AB vuông góc AC
=> DE cũng vuông góc AC
d)
Chắc do tính chất 2 đường chéo hình thoi