Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC vuông tại A và ΔADI vuông tại A có
AD chung
AC=AI
=>ΔADC=ΔADI
b: Xét ΔBCI có
BA là đườg cao, là trung tuyến
=>ΔBCI cân tại B
c: \(CD=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)
=>\(CG=\dfrac{2}{3}\sqrt{73}\left(cm\right)\)
Giải:
a) Ta có: MB=MC = 1/2 BC = 1/2 * 24 = 12(CM)
Tam giác ABC vuông tại A, theo định lí Py-ta-go, ta có:
AM2 = AB2 - MB2 = 152 - 122 = 81
AM = \(\sqrt{81}\)= 9(cm)
b) G là trọng tâm cùa tam giác ABC
Suy ra AG = 2/3 * AM = 2/3 * 9 = 6(cm)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=30cm\)
Chu vi tam giác ABC là
AB + AC + BC = 72 cm
a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :
BC2 =AC2+AB2
hay BC^2 =12^2+9^2
BC^2=81+144=225
BC=15CM
b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc
=> AM=1/2 BC
hay AM=1/2.15
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc
=> GM=1/3 AM ( tính chất đường trung tuyến )
GM=1/3.7,5
GM=2,5 cm
a) Xét 2 tam giác BAI và tam giác CAI, ta có:
AB = AC (giả thiết tam giác cân)
góc BAI = góc CAI (AI là tia phân giác góc A)
AI là cạnh chung
\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)
\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)
Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)
\(\Rightarrow\) AI vuông góc với BC
b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)
\(\Rightarrow\) AI là trung tuyến của tg ABC
Lại có: BD là trung tuyến của tg ABC
Mà AD giao với BC tại M nên M là trọng tâm của tg ABC
c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)
Áp dụng định lí Pitago vào tg vuông AIB có:
\(AB^2=BI^2+AI^2\)
\(\Rightarrow AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2=25-9=16\)
\(\Rightarrow\) \(AI=4\) (cm)
\(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)
Vậy AM = 8/3 (cm)
Chúc bạn học tốt !!!
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)