Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
(Bạn tự vẽ hình :P)
a) Xét ΔABC có:
IB = IA ( I là tia đối của AB)
BM = CM (M là tia đối của BC)
=> IM là đương trung bình của ΔABC
=> IM // AC và IM = 1/2AC
mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC
=> IM // AK và IM = AK
=> Tứ giác AIMK là hình bình hành có góc A = 90o
=> AIMK là hình chữ nhật
Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)
AK = CK = AC/2= 8/2= 4 (K là tia đối của AC)
Diện tích hình chữ nhật AIMK :
SAIMK = AI.AK = 3.4 = 12 cm2
b) Áp dụng Py-ta-go vào Δ vuông ABC có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82 = 100
=> BC = 10
Xét Δ vuông ABC có :
AM là đường trung tuyến ứng với BC
=> AM = 1/2BC = 1/2.10
=> AM = 5
Vậy AM = 5cm
c) Có IM = AK (cạnh đối hình chữ nhật AIMK)
mà JI = JM = 1/2IM và SA = SK = 1/2AK
=> JI = JM = SA = SK (1)
Có IA = MK (cạnh đối hình chữ nhật AIMK )
mà PI = PA = 1/2IA và HM = HK = 1212MK
=> PI = PA = HM = HM (2)
Có góc A = góc I = góc M = góc K (3)
Từ (1) (2) và (3) suy ra :
ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)
=> JP = JH = SP = SH (các cạnh tương ứng )
=> Tứ giác JPSH là hình thoi
=> PH vuông góc với JS (tính chất đường chéo hình thoi)
theo pytago \(=>AC=\sqrt{AB^2+BC^2}=\sqrt{6^2+8^2}=10cm\)
K là trung điểm AC =>BK là trung tuyến AC
=>\(BK=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay AC=10(cm)
Suy ra: \(BK=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a) Ta có
+)AM=AB-BM=6-3,75=2,25
+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)
=> AN=3(cm)
CN=AC-AN=8-3=5(cm)
b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)
+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)
(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)
=> BI=CI => I là trung điểm BC
c) \(\Delta\)ABC vuông tại A
=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)
=> BC=10cm
Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)
=> BN là phân giác \(\widehat{ABC}\)
A B C M N K
a) Áp dụng định lí Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\)
Xét tam giác ABC có :
\(\hept{\begin{cases}NA=NB\left(gt\right)\\NA=NC\left(gt\right)\end{cases}}\)
\(\Rightarrow\)NM là đường trung bình của tam giác ABC .
\(\Rightarrow NM=\frac{1}{2}BC\)
\(\Rightarrow NM=5cm\)
b) Ta có \(BC=10cm\) ( câu a )
\(\Rightarrow BK=CK=5cm\)
Xét tam giác ABC có :
AK là đường trung tuyến (gt)
\(\Rightarrow AK=\frac{1}{2}BC\)
\(\Rightarrow AK=5cm\)
( Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền )