K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

A B C M N K

26 tháng 10 2018

a)  Áp dụng định lí Py-ta-go ta có :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow8^2+6^2=BC^2\)

\(\Rightarrow64+36=BC^2\)

\(\Rightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\)

Xét tam giác ABC có :

\(\hept{\begin{cases}NA=NB\left(gt\right)\\NA=NC\left(gt\right)\end{cases}}\)

\(\Rightarrow\)NM là đường trung bình của tam giác ABC .

\(\Rightarrow NM=\frac{1}{2}BC\)

\(\Rightarrow NM=5cm\)

b)  Ta có \(BC=10cm\) ( câu a )

\(\Rightarrow BK=CK=5cm\)

Xét tam giác ABC có :

AK là đường trung tuyến (gt)

\(\Rightarrow AK=\frac{1}{2}BC\)

\(\Rightarrow AK=5cm\)

( Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền )

2 tháng 7 2019

#)Giải : 

(Bạn tự vẽ hình :P)

a) Xét ΔABC có:

IB = IA ( I là tia đối của AB)

BM = CM (M là tia đối của BC)

=> IM là đương trung bình của ΔABC

=> IM // AC và IM = 1/2AC

mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC

=> IM // AK và IM = AK

=> Tứ giác AIMK là hình bình hành có góc A = 90o

=> AIMK là hình chữ nhật

Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)

AK = CK = AC/28/2= 4 (K là tia đối của AC)

Diện tích hình chữ nhật AIMK :

SAIMK = AI.AK = 3.4 = 12 cm2

b) Áp dụng Py-ta-go vào Δ vuông ABC có:

BC2 = AB2 + AC2

hay BC2 = 62 + 82 = 100

=> BC = 10

Xét Δ vuông ABC có :

AM là đường trung tuyến ứng với BC

=> AM = 1/2BC = 1/2.10

=> AM = 5

Vậy AM = 5cm

c) Có IM = AK (cạnh đối hình chữ nhật AIMK)

mà JI = JM = 1/2IM và SA = SK = 1/2AK

=> JI = JM = SA = SK (1)

Có IA = MK (cạnh đối hình chữ nhật AIMK )

mà PI = PA = 1/2IA và HM = HK = 1212MK

=> PI = PA = HM = HM (2)

Có góc A = góc I = góc M = góc K (3)

Từ (1) (2) và (3) suy ra :

ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)

=> JP = JH = SP = SH (các cạnh tương ứng )

=> Tứ giác JPSH là hình thoi

=> PH vuông góc với JS (tính chất đường chéo hình thoi)

9 tháng 1 2017

CÓ VẺ BẠN CHÉP ĐỀ SAI OY ĐÓ

16 tháng 12 2020
Câu c khó quá mik k lm đc
16 tháng 7 2021

theo pytago \(=>AC=\sqrt{AB^2+BC^2}=\sqrt{6^2+8^2}=10cm\)

K là trung điểm AC =>BK là trung tuyến AC

=>\(BK=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow AC^2=6^2+8^2=100\)

hay AC=10(cm)

Suy ra: \(BK=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

2 tháng 4 2020

a) Ta có

+)AM=AB-BM=6-3,75=2,25

+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)

=> AN=3(cm)

CN=AC-AN=8-3=5(cm)

b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)

+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)

(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)

=> BI=CI => I là trung điểm BC

c) \(\Delta\)ABC vuông tại A

=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)

=> BC=10cm

Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)

=> BN là phân giác \(\widehat{ABC}\)