Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=3^2+4^2=25\)
hay AC=5(cm)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)
\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)
Áp dụng ĐLPTG, ta có:
AC²=AB²+BC²
<=>AC²=3²+4²=25
<=>AC=5(cm)
Xét tam giác ABC vuông tại B ta có:
Sin A=4/5 cos A=3/5 tg A=3/4 cost A=4/3
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
a,Sin B=\(\frac{AC}{BC}=\)\(\frac{4}{5}=0.8\)
Cos B=\(\frac{AB}{BC}=\frac{3}{5}=0,6\)
Tan B =\(\frac{AC}{AB}=\frac{4}{3}\)
Cot B=\(\frac{AB}{AC}=\frac{3}{4}=0,75\)
b,Vì sin B = 0,8 => B=53o
=> C=37o(áp dụng hệ quả định lí tổng r tính)
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
a: Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC ta có :
BC\(^2\)= AB\(^2\)+AC\(^2\)
=> AC\(^2\) = 25 - 9
=> AC = 4 (cm)
SinB = AC/BC = \(\frac{4}{5}\)
CosB = AB/BC = \(\frac{3}{5}\)
TanB = AC/AB =\(\frac{4}{3}\)
CotB =AB/AC = \(\frac{3}{4}\)
b) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC có :
BC2 = AB2 +AC2
=> BC2= 169 +144
=> BC =\(\sqrt{313}\)
SinB = AC/BC =\(\frac{12}{\sqrt{313}}\)
CosB = AB/BC = \(\frac{13}{\sqrt{313}}\)
TanB = AC/AB =\(\frac{12}{13}\)
CotB = AB/AC = \(\frac{13}{12}\)
\(\sin\widehat{B}=\sin60^0=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{B}=\dfrac{1}{2}\)
\(\tan\widehat{B}=\sqrt{3}\)
\(\cot\widehat{B}=\dfrac{\sqrt{3}}{3}\)
Giải chi tết ra được không ạ ? Chứ em không hiểu lắm :((