K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

sorry, em mới học lớp 6 thui

27 tháng 11 2015

:( lớp 4 mà cho bài lớp 8 :(

19 tháng 11 2016

Xét hbh ABCD có:

F là trung điểm của AD (gt)

E là trung điểm của BC (gt)

=> EF là đường trung bình của hbh ABCD 

=> AB//EF//DC (t/c đướng trung bình của hbh)

Ta có: hbh ABCD

=> Góc A = Góc C và góc B = góc D( t/c hbh)

Ta có: EF//DC(cmt) => góc AFE = góc ADC ( cặp góc đồng vị)

Mà Góc B = Góc ADC (cmt)

  => Góc B = góc AFE (1)

Ta có: EF//DC(cmt) => Góc BEF = góc BCD (cặp góc đồng vị)

Mà góc A = góc BCD 

  => góc A =góc BEF (2)

Từ (1) và (2)

  => Tứ giác ABEF là hình bình hành (5) ( các cặp góc đối bằng nhau)

Ta có: AD = 2AB hay AB = \(\frac{1}{2}\)AD (3)

 mà AF = \(\frac{1}{2}\)AD(4)

 Từ (3) và (4) => AB = AF (6)

Từ(5) và (6) => tứ giác ABEF là hình thoi ( hbh + 2 cạnh kề bằng nhau)

=> AE vuông góc với BF

Ở CÂU a) bạn có thể cm AB//EF và  AF// BE đề suy ra hbh nha

b) Gói O là giao điểm của AE và BF

Ta có: tứ giác ABEF là hình thoi => BF là tia phân giác của góc B ( t/c hình thoi)

Ta có: góc A = góc BEF (cmt)

Mà góc A = 60 độ (gt) 

=> góc A = góc BEF = 60 độ

Xét tứ giác ABEF có:

 góc BAF + góc ABE + góc BEF + góc AFE = 360 độ

=> 60 độ + góc ABE + 60 độ + góc AFE = 360 độ

=> góc ABE + góc  AFE = 360 độ - 60 độ - 60 độ = 240 độ

Mà góc ABE = góc AFE 

=> góc ABE = góc AFE = \(\frac{240}{2}\)=120 độ

Ta có: BF là tia p/g của góc B => góc ABF = góc EBF = \(\frac{120}{2}\) 60 độ

Vậy góc EBF = góc BEF = 60 độ ( góc A  = góc BEF đã cm ở câu a)

Mà góc BEF = góc BCD ( đã cm ở câu a)

=> góc EBF = góc BCD (7)

Ta có: AD//BC( tứ giác ABCD là hbh)=> FD//BC=> tứ giác FDCB là hình thang (8)

 Từ (7) và (8) => tứ giác FDCB là hinh thang cân

Câu c và d dễ lắm, bạn cố suy nghĩ nha, nhưng mình nói thật bài này rất rất rất dễ luôn đó

c) 

     

19 tháng 11 2016

c) Ta có: góc A = góc ABF = 60 độ ( cm ở câu b )

  => AF = FB ( quan hệ giữa góc và cạnh đối diện)

Mà AF = FD ( f là trung điểm của AD)

=> FB = FD

=> tam giác DFB cân tại F

=> góc FBD = góc FDB (9)

Ta có: AD//BC ( cmt)

=> Góc FDB = góc CBD ( cặp góc slt)(10)

Từ (9) và (10) => góc FBD=góc CBD

Mà góc FBD+ góc CBD = 60 độ

=> góc FBD = góc CBD = \(\frac{60}{2}\)= 30 độ

Mà góc FDB = góc FBD

=> góc FDB = 30 độ

d) Ta có: B là trung điểm của AM => A,B,M thẳng hàng

Ta có: B là trung điểm của AM ( M đối xứng với A qua B) => AB = BM

  Mà AB = DC ( tứ giác ABCD là hbh)

DC = BM(11)

Ta có: AB//DC( tứ giác ACD là hbh)

Mà A,B,M thẳng hàng

=> BM//DC (12)

Tứ (11) và (12)

=> tứ giác BMCD là hình bình hành (13)

Ta có: góc ABE = góc AFE = 120 độ (cm ở câu b)

Mà góc ADC bằng 2 góc này

=> góc ADC = 120 độ

Xét góc ADC có:

góc ADB + góc BDC = 120 độ

=> 30 độ + góc BDC = 120 độ

=> góc BDC = 120 độ - 30 độ = 90 độ (14) 

Từ (13) và (14)

=> tứ giác BMCD là hình chữ nhật ( hbh+ 1 góc vuông)

=> E là trung điểm của BC và BC ( t/c hình chữ nhật)

Có  E là trung điểm của MD => 3 điểm D,E,M thẳng hàng

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8