K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

CONAN và KUDO SHINICHI bắt đầu đoán mò

6 tháng 9 2020

Áp dụng định lí Ceva cho tam giác ABC có 3 cát tuyến AH,BM,CD đồng quy: \(\frac{MA}{MC}.\frac{HC}{HB}.\frac{DB}{DA}=1\Rightarrow\frac{HC}{HB}=\frac{AD}{BD}\)

                                                                          (Vì M trung điểm AC nên \(\frac{MA}{MC}=1\))

(Định lí Ceva này bạn có thể lên google search để nắm rõ, Định lí này chỉ học sinh trong đội tuyển mới học thoi)

Vì CD là phân giác \(\widehat{BCA}\)nên \(\frac{CA}{CB}=\frac{DA}{DB}\Rightarrow\frac{AC}{BC}=\frac{HC}{HB}=\frac{BC-HB}{HB}=\frac{BC}{HB}-1\)

\(\Rightarrow AC=\frac{BC^2}{HB}-BC=\frac{AB^2+AC^2}{HB}-BC=\frac{HB.BC+AC^2}{HB}-BC=\frac{AC^2}{HB}\Rightarrow AC=HB\)

( Chỗ này áp dụng định lí Pythagoras: BC2 = AB2+AC2 và Hệ thức lượng tam giác vuông AB2=HB.BC)

Có \(\hept{\begin{cases}AB^2=HB.BC\\BC^2=AB^2+AC^2\end{cases}\Rightarrow\hept{\begin{cases}AB^2=aAC\\AB^2=a^2-AC^2\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{aAC}\\AC^2+aAC-a=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}AC=\frac{-a+\sqrt{a^2+4a}}{2}=\frac{2a}{a+\sqrt{a^2+4a}}\\AB=\sqrt{aAC}=\sqrt{\frac{2a^2}{a+\sqrt{a^2+4a}}}\end{cases}}\)

5 tháng 11 2020

chua hoc

24 tháng 7 2020

a) tam giác ABc có CF là đường phân giác => \(\frac{BF}{BC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{AB\cdot BC}{BC+AC}\)

tương tự cũng có \(CE=\frac{AC\cdot BC}{BC+AB}\)

tam giác BCE có CD là đường phân giác => \(\frac{BD}{BC}=\frac{DE}{CE}\)

=> \(\frac{BD}{BC}=\frac{DE}{CE}\)do đó \(\frac{BD}{BE}=\frac{AB+AC}{AB+BC+AC}\) tương tự \(\frac{CF}{CD}=\frac{AB+BC+AC}{AC+BC}\)

tam giác ABC vuông tại A => AB2+AC2=BC2 => (AB+BC+AC)2=2(AB+BC)(AC+BC)

\(\Rightarrow\frac{AB+BC+AC}{AC+BC}=\frac{2\left(AB+AC\right)}{AB+BC+AC}\)

do đó \(\frac{CF}{CD}=\frac{2BD}{BE}\Rightarrow BE\cdot CF=2BD\cdot CD\left(đfcm\right)\)

24 tháng 7 2020

gọi I là giao của AH,BM,CF. K là điểm đối xứng của I qua M

tứ giác IAKC là hình bình hành => AI//CK, AK//IC

tam giác ABC có IF//AK => \(\frac{BF}{AF}=\frac{BI}{KI}\), tam giác BCK có IH//CK => \(\frac{BI}{KI}=\frac{BH}{CH}\)

tam giác BAK có CF là phân giác => \(\frac{BF}{AF}=\frac{BC}{AC}\)do đó \(\frac{BH}{CH}=\frac{BC}{AC}\)=> BH.AC=CH.BC

tam giác ABC vuông ở A, AH là đường cao => AC2=CH.BC

ta có BH.AC=AC2(=CH.BC) => BH=AC

tam giác ABH vuông tại H => cosB=\(\frac{BH}{AH}=\frac{AC}{AB}\); tam giác ABC vuông ở A => tanB=\(\frac{AC}{AB}\)

do đó cosB=tanB. mà tan2B+1=\(\frac{\sin^2B}{\cos^2B}+1=\frac{1}{\cos^2B}\)

ta có \(\frac{1}{\cos^2B}=\frac{1}{\tan^2B}\)=> tan2B+1=\(\frac{1}{\tan^2B}\)

=> tan4B+tan2B=1 => \(\left(\tan^2B+\frac{1}{2}\right)^2=\frac{5}{4}\tan^2B+\frac{1}{2}=1\)

\(\Rightarrow\tan B=\sqrt{\frac{\sqrt{5}-1}{2}}\Rightarrow\frac{AB}{AC}=\sqrt{\frac{2\sqrt{5}-2}{2}}\)

16 tháng 9 2020

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

17 tháng 9 2020

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0