K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

6 tháng 6 2017

a)xét tam giác ABD và tam giác EBD,ta có:

góc DEB= góc DAB(=90 độ)

góc EBD=ABD(BD là p/g)

BD chung

Vậy tam giác ABD=tam giác EBD(CẠNH HUYỀN CẠNH GÓC NHỌN)

=>AD=EB

b)xét tam giác ADF và ECD,ta có:

góc CED=FAD(= 90 độ)

DE=DA(cmt)

góc CDE=FDA(đối đỉnh)

=>tam giác ADF=ECD(g.c.g)

=>DF=DC(...)

c)xét tam giácvuông ADF ta có

FD là cạnh huyền

=>AD<FD

có FD=CD(cmt)

=>AD<DC

CHÚC BẠN HỌC TỐT!

23 tháng 6 2020

tự kẻ hình nha:3333

a) xét tam giác ABD và tam giác EBD có

ABD=EBD(gt)

BD chung

BAD=BED(=90 độ)

=> tam giác ABD= tam giác EBD(ch-gnh)

=> AB=BE( hai cạnh tương ứng)

đặt K là giao điểm của BD và AE

xét tam giác ABK và tam giác EBK có

AB=EB(cmt)

ABK=EBK(gt)

BK chung

=> tam giác ABK= tam giác EBK(cgc)

=> AK=EK( hai cạnh tương ứng)=> K là trung điểm của AE=> BD là trung tuyến AE

b) xét tam giác ABC và tam giác EBF có

ABE chung

AB=EB(cmt)

BAC=BEF(=90 độ)

=> tam giác ABC= tam giác EBF(gcg)

=> AC=EF( hai cạnh tương ứng)

từ tam giác ABD= tam giác EBD=> AD= ED( hai cạnh tương ứng)

ta có AC-AD=EF-ED=> DC=DF

c) áp dụng định lý pytago vào tam giác vuông DEC=> DC^2=ED^2+EC^2

=> DC^2> DE^2

mà ED=AD=> DC^2> AD^2=> DC>AD( DC,AD>0)

23 tháng 6 2020

Hình bạn tự vẽ nhé

a. Xét hai tam giác vuông ABD và tam giác EBD có 

          góc ABD = góc EBD = 90độ

          cạnh BD chung 

          góc ABD = góc EBD [ vì BD là pg góc B ]

Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)BA = BE nên B thuộc đường trung tuyến của  AE 

 và DA = DE nên D thuộc đường trung tuyến của AE 

\(\Rightarrow\)BD là đường trung tuyến của AE 

b.Xét tam giác ADF và tam giác EDC có

         góc DAF = góc DEC = 90độ

        DA = DE [ theo câu a]

       góc ADF = góc EDC [ đối đỉnh ]

Do đó ; tam giác ADF = tam giác EDC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)DF = DC [ cạnh tương ứng ]

c.Xét tam giác DEC vuông tại E nên 

 DE bé hơn DC 

mà DE = AD [ theo câu a]

\(\Rightarrow\)AD bé hơn DC

học tốt

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

20 tháng 4 2019

Xin lỗi mk ko biết vẽ hình trên máy

a) Xét tam giác ABD và tan giác EBD có :

BD chung 

góc ABD = góc EBD ( vì BD la phân giác góc B )

góc A = góc E ( = 90 )

=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )

=> AD = DE

Chúc bạn hc tốt

15 tháng 2 2021

lol

11 tháng 8 2021

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

2 tháng 6 2015

đề này  mk từng giải rồi:

a)   Tam giác ABD = tam giác EBD

xét 2 tam giác vuông: ABD và EBD, có:

BD là cạnh chung

góc ABD = góc CBD

=> tam giác ABD = tam giác EBD (cạnh huyền - góc nhọn)              (đpcm)

b)    Tam giác ABE là tam giác nào?        mk nghĩ ABE là tam giác gì mới đúng

theo câu a    => BA = BE (2 cạnh tương ứng)

=> tam giác ABE là tam giác cân  và cân tại B

c) mk nghĩ bạn đánh nhầm: chứng minh: AD = DE mới đúng

xét 2 tam giác vuông:  ADF và EDC, có:

góc ADF = góc EDC   (2 góc đối đỉnh)

AD = AE   (2 cạnh tương ứng theo câu a)

=> tam giác ADF = tam giác EDC      (cạnh góc vuông - góc nhọn kề)

=> AD  = DE           (đpcm)

d) AD < DC

ta có: trong tam giác vuông DEC:

DC là cạnh huyền                => DC là cạnh lớn nhất trong tam giác

=>  DC > DE    

mà AD = DE         (theo câu c)

=> DC > AD       hay AD < DC (đpcm)

tớ đã làm rất chi tiết rồi

Giải:

a/Xét 2 TG vuông ABD và TG EBD ,ta có:

BD chung

Góc ABD= góc EBD (gt)

=>TG ABD = TG EBD (ch-gn)

=>BA=BE ( cặp cạnh tương ứng)

b/Vì BA=BE ( TG ABD= TG EBD) nên TG ABE là tam giác cân tại B.