K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)

\(\widehat{HAE}+\widehat{BEA}=90^0\)

mà \(\widehat{BAE}=\widehat{BEA}\)

nên \(\widehat{CAE}=\widehat{HAE}\)

Xét Δ​AHE và Δ​AKE

AE chung

\(\widehat{EAH}=\widehat{EAK}\)

AH=AK

Do đó:Δ​AHE=Δ​AKE

b: KE<CE

nên CE=CH-HE

nên KE<CH-HE

và CE=CB-BE

nên CH-HE<CB-BE

mà BA=BE

và HE=AH

nên BC+AH>AB+AC

5 tháng 3 2017

theo minh la dap an A ;nho k minh nhe

7 tháng 1 2019

  E A B C H K F

hình hơi sấu hihi^_^

xin lỗi bn nha mk ko có thời gian nên chỉ hướng dẫn cách làm cho bn đc thôi

kẻ EF vuông góc vs AB,nối A vs E 

bn c/m \(\Delta ABH=\Delta EBF\left(ch-gn\right)\)( góc B chung ,AB=EB)

=>AH=EF(1)

Do \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}\Rightarrow EF//AC\Rightarrow EF//AK}\)

=> 2cais góc E và A mk đánh dấu =nhau

=> \(\Delta KEA=\Delta FAE\left(ch-gn\right)\)

=> AK=EF(2)

TỪ (1),(2) =>ĐPCM

19 tháng 2 2019

sửa lại đề 1 chút nhé :v BE = BA phải chứ

có tam giác ABC vuông tại A 

=> CA _|_ AB (đn)

EK _|_ AC (gt)

=> KE // AB (tc) mà góc KEA so le trong EAB 

=> góc KEA = góc EAB (tc)                         (1)

AB = BE (GT) => tam giác ABE cân tại B (đn) => góc EAB = góc AEB      (2)

(1)(2) => góc KEA = góc AEB (tcbc)

xét tam giác AEK và tam giác AEH có : AE chung

góc EKA = góc EHA = 90 do EK _|_ AC (gt) và AH _|_ BC (gt)

=> tam giác AEK = tam giác AEH (ch - gn)

=> AK = AH (đn)

2 tháng 3 2016

a)  Từ A kẻ đường cao ( hoặc đường trung tuyến  , phân giác) cắt HK tại I 

Xét tam giác AIH và tam giác AIK có :

^A1 = ^A2  ( AI là đường cao của ^A)

AI cạnh chung 

suy ra : tam giác AIH = tam giác AIK( Cạnh góc vuông - Góc nhọn)

suy ra : AK = AH ( 2 cạnh tương ứng )

chú ý : ^ là góc , ngoài ra có thể chứng minh theo trường hợp khác như g-c-g

29 tháng 4 2018

Ta có :  BA = BE ( GT ) => Góc BAE = Góc BEA 

                                     hay Góc BAE = Góc HEA 

+  Góc BAE + góc EAK = 90 độ ( = góc BAC )  ( 1 ) 

+  Xét tam giác HAE vuông tại H : 

Góc HAE + góc HEA = 90 độ  ( 2 ) 

Từ ( 1 ) ; ( 2 ) => Góc EAK = Góc HAE 

Xét tam giác HAE và tam giác KAE có : 

góc EAK = góc HAE ( cmt ) 

AE chung 

Góc AHE = Góc AKE ( = 90 độ ) 

=> Tam giác HAE = Tam giác KAE ( chgn ) 

=>   AH = AK ( 2 cạnh tương ứng ) 

Vậy AH = AK 

Chúc bạn học tốt !!! 

29 tháng 4 2018

A B C H E K

16 tháng 7 2016

Nối A và E lại ta có tam giác BAE cân tại B (vì BE=BA). Ta có góc BAE + góc CAE = góc ABC 
=90 độ. Mặt khác góc CAE + góc AEK = góc EKA = 90 độ => góc BAE = góc AEK. Mà góc BAE = góc BEA (tam giác BAE cân tại B) => góc AEK = góc BEA. Xét tam giác vuông AHE và AKE bằng nhau theo trường hợp cạnh góc vuông (AE chung) góc nhọn kề (góc AEK = góc BEA) => AK = AH (đpcm)

8 tháng 9 2018

( hình vẽ và GTKL tự làm)

a) xét \(\Delta ABH\)\(\Delta ACH\)có :

\(AB=AC\)\(\left(GT\right)\)

\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)

\(AH\)\(chung\)

b) Ta có  \(AHB=AHC\)( 2 góc tương ứng )

.Mà \(AHB+AHC=180\)O

\(\Rightarrow AHB=AHC=90\)O

\(\Rightarrow AH\perp BC\)

C) Xét 2 \(\Delta AHB\)\(KHC\)có :

\(BH=CH\)\(\left(GT\right)\)

\(KH=AH\left(GT\right)\)

\(BHA=CHK\)( ĐỐI ĐỈNH )

\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)

\(\Rightarrow ABH=KCH\)( 2 góc  tương ứng ) 

Mà 2 góc này so le trong

\(\Rightarrow CK//AB\)