Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{CAE}=\widehat{HAE}\)
Xét ΔAHE và ΔAKE
AE chung
\(\widehat{EAH}=\widehat{EAK}\)
AH=AK
Do đó:ΔAHE=ΔAKE
b: KE<CE
nên CE=CH-HE
nên KE<CH-HE
và CE=CB-BE
nên CH-HE<CB-BE
mà BA=BE
và HE=AH
nên BC+AH>AB+AC
E A B C H K F
hình hơi sấu hihi^_^
xin lỗi bn nha mk ko có thời gian nên chỉ hướng dẫn cách làm cho bn đc thôi
kẻ EF vuông góc vs AB,nối A vs E
bn c/m \(\Delta ABH=\Delta EBF\left(ch-gn\right)\)( góc B chung ,AB=EB)
=>AH=EF(1)
Do \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}\Rightarrow EF//AC\Rightarrow EF//AK}\)
=> 2cais góc E và A mk đánh dấu =nhau
=> \(\Delta KEA=\Delta FAE\left(ch-gn\right)\)
=> AK=EF(2)
TỪ (1),(2) =>ĐPCM
sửa lại đề 1 chút nhé :v BE = BA phải chứ
có tam giác ABC vuông tại A
=> CA _|_ AB (đn)
EK _|_ AC (gt)
=> KE // AB (tc) mà góc KEA so le trong EAB
=> góc KEA = góc EAB (tc) (1)
AB = BE (GT) => tam giác ABE cân tại B (đn) => góc EAB = góc AEB (2)
(1)(2) => góc KEA = góc AEB (tcbc)
xét tam giác AEK và tam giác AEH có : AE chung
góc EKA = góc EHA = 90 do EK _|_ AC (gt) và AH _|_ BC (gt)
=> tam giác AEK = tam giác AEH (ch - gn)
=> AK = AH (đn)
a) Từ A kẻ đường cao ( hoặc đường trung tuyến , phân giác) cắt HK tại I
Xét tam giác AIH và tam giác AIK có :
^A1 = ^A2 ( AI là đường cao của ^A)
AI cạnh chung
suy ra : tam giác AIH = tam giác AIK( Cạnh góc vuông - Góc nhọn)
suy ra : AK = AH ( 2 cạnh tương ứng )
chú ý : ^ là góc , ngoài ra có thể chứng minh theo trường hợp khác như g-c-g
Ta có : BA = BE ( GT ) => Góc BAE = Góc BEA
hay Góc BAE = Góc HEA
+ Góc BAE + góc EAK = 90 độ ( = góc BAC ) ( 1 )
+ Xét tam giác HAE vuông tại H :
Góc HAE + góc HEA = 90 độ ( 2 )
Từ ( 1 ) ; ( 2 ) => Góc EAK = Góc HAE
Xét tam giác HAE và tam giác KAE có :
góc EAK = góc HAE ( cmt )
AE chung
Góc AHE = Góc AKE ( = 90 độ )
=> Tam giác HAE = Tam giác KAE ( chgn )
=> AH = AK ( 2 cạnh tương ứng )
Vậy AH = AK
Chúc bạn học tốt !!!
Nối A và E lại ta có tam giác BAE cân tại B (vì BE=BA). Ta có góc BAE + góc CAE = góc ABC
=90 độ. Mặt khác góc CAE + góc AEK = góc EKA = 90 độ => góc BAE = góc AEK. Mà góc BAE = góc BEA (tam giác BAE cân tại B) => góc AEK = góc BEA. Xét tam giác vuông AHE và AKE bằng nhau theo trường hợp cạnh góc vuông (AE chung) góc nhọn kề (góc AEK = góc BEA) => AK = AH (đpcm)
( hình vẽ và GTKL tự làm)
a) xét \(\Delta ABH\)và\(\Delta ACH\)có :
\(AB=AC\)\(\left(GT\right)\)
\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
\(AH\)\(chung\)
b) Ta có \(AHB=AHC\)( 2 góc tương ứng )
.Mà \(AHB+AHC=180\)O
\(\Rightarrow AHB=AHC=90\)O
\(\Rightarrow AH\perp BC\)
C) Xét 2 \(\Delta AHB\)và\(KHC\)có :
\(BH=CH\)\(\left(GT\right)\)
\(KH=AH\left(GT\right)\)
\(BHA=CHK\)( ĐỐI ĐỈNH )
\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)
\(\Rightarrow ABH=KCH\)( 2 góc tương ứng )
Mà 2 góc này so le trong
\(\Rightarrow CK//AB\)