K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2022

Ta có \(\dfrac{BH}{CH}=\dfrac{9}{16}\Leftrightarrow BH=\dfrac{9}{16}CH\) (1)

Tam giác ABC vuông tại A có đường cao AH nên \(BH.CH=AH^2=48^2=2304\)

Kết hợp với (1), ta có \(\dfrac{9}{16}CH^2=2304\Leftrightarrow CH^2=4096\Leftrightarrow CH=64\left(cm\right)\) (do \(CH>0\))

Lại có \(BH=\dfrac{9}{16}CH=\dfrac{9}{16}.64=36\left(cm\right)\)

Do đó \(BC=BH+CH=36+64=100\left(cm\right)\)

Tam giác ABC vuông tại A, đường cao AH nên ta có \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH.BC}=\sqrt{36.100}=60\left(cm\right)\\AC=\sqrt{CH.BC}=\sqrt{64.100}=80\left(cm\right)\end{matrix}\right.\)

Vậy \(AB=60cm;AC=80cm\)

b) Ta có \(VT=BD^2-CD^2=\left(BD+CD\right)\left(BD-CD\right)\) \(=BC\left(BD-CD\right)\) (2)

Dễ thấy ID//AH do cùng vuông góc với BC. Tam giác CAH có I là trung điểm AC, ID//AH nên D là trung điểm HC, do đó \(CD=DH\). Thay vào (2), ta có \(VT=BC\left(BD-DH\right)=BC.BH=AB^2=VP\). Vậy đẳng thức được chứng minh.

11 tháng 10 2016

Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//AB => IE là đường trung bình của tam giác ABC => AB=2.IE và EB=EC=BC/2

=> \(AB^2=4.IE^2\)

Xét tam tg vuông EIC có 

\(IE^2=ED.EC\) (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AB^2=4.IE^2=4.ED.EC\) (*)

Ta có \(EC=\frac{BC}{2}\) và \(ED=EC-CD=\frac{BC}{2}-CD\) Thay vào (*) ta có

\(AB^2=4.\left(\frac{BC}{2}-CD\right).\frac{BC}{2}=4.\left(\frac{BC^2}{4}-\frac{CD.BC}{2}\right)\)

\(AB^2=BC^2-2.CD.BC\) (**)

Mà \(BC=BD+CD\) Thay vào (**)

\(\Rightarrow AB^2=\left(BD+CD\right)^2-2.CD.\left(BD+CD\right)=BD^2+CD^2+2.BD.CD-2.BD.CD-2.CD^2\)

\(\Rightarrow AB^2=BD^2-CD^2\) (dpcm)

16 tháng 6 2015

Từ A hạ AK vuông góc với BC. Ta có  KD = DC

Mà : BD^2 - CD^2=(BC-CD)^2 - CD^2= BC^2+CD^2-2BC.CD

= BC^2-BC.2CD=BC^2-BC.KC

= BC^2-AC^2=AB^2(dpcm)

(*) : AB^2=BC^2-AC^2

3 tháng 10 2021

Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//ABIE//AB => IE là đường trung bình của tam giác ABC => AB=2.IEAB=2.IE và EB=EC=BC2EB=EC=BC2

=> AB2=4.IE2AB2=4.IE2

Xét tam giác vuông EIC có :

IE2=ED.ECIE2=ED.EC (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)

⇒AB2=4.IE2=4.ED.EC⇒AB2=4.IE2=4.ED.EC (1)

Ta có EC=BC2EC=BC2 và ED=EC−CD=BC2−CDED=EC−CD=BC2−CD Thay vào (1) ta có:

AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)

AB2=BC2−2.CD.BCAB2=BC2−2.CD.BC (2)

Mà BC=BD+CDBC=BD+CD Thay vào (2)

⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2

⇒AB2=BD2−CD2⇒AB2=BD2−CD2 (đpcm)