K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

c, Theo phần b có , tgiac AHD đồng dạng tgiac CED

=? HD/ED = AD/CD

 Xét tgiac HDE và tgiac ADC, có:

 góc HDE = góc ADC ( 2 góc đối đỉnh)

HD/ED = AD/ CD (cmt)

=> tg HDE đồng dậng tg ADC ( c.g.c)

d, Áp dụng định lý Pytago vào tg ABC , có:

BC^2 = AB^2 + AC^2 = 6^2 + 8^2

=>BC = 10 (cm)

Có : BA^2 = BH. BC

=> BH = 3,6 = HD

=> BD = 2BH = 7,2(cm)

=> DC = BC - BD = 2,8 (cm)

Chứng minh tgiac AHB = tg AHD (c.g.c)

=> AD = AB = 6 (cm)

theo phần b, tg CDE đồng dạng th ADH

=> Dc/DA = DE/DH

=> DE = 1,68

Áp dụng đính lý pytagp vào tg CED

=> DC^2 = EC^2 + De^2

=> EC = 2,24

=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)

Bài làm

Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài, 

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác ABC ~ Tam giác HBA ( g - g )

b) Xét tam giác AHD và tam giác CED có:

\(\widehat{AHD}=\widehat{CED}=90^0\)

\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )

=> Tam giác AHD ~ Tam giác CED ( g - g )

=> \(\frac{AH}{EC}=\frac{AD}{DC}\)

\(\Rightarrow AH.CD=AD.EC\)( đpcm )

c) Vì tam giác AHD ~ Tam giác CED ( cmt )

=> \(\frac{HD}{DE}=\frac{AD}{DC}\)

Xét tam giác HDE và tam giác ADC có:

\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )

\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )

=> Tam giác HDE ~ tam giác ADC ( g - c - g )

d) Xét tam giác ABC vuông ở A có:

Theo Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 62 + 82 

=> BC2 = 36 + 64

=> BC2 = 100

=> BC = 10 ( cm )

Diện tích tam giác ABC là:

SABC = 1/2 . AB . AC

SABC = 1/2 . AH . BC

=> AB . AC = AH . BC

hay 6 . 8 = AH . 10

=> AH = 4,8 ( cm )

Xét tam giác AHC vuông ở H có:

Theo pytago có:

HC2 = AC2 - AH2 

hay HC2 = 82 - 4,82 

=> HC2 = 64 - 23,04

=> HC = 6,4 ( cm )

Ta có: BH + HD + DC = BC

=> HD + HD + DC = BC

=> 2HD + HC - HD = BC

Hay 2HD + 6,4 - HD = 10

=> HD + 6,4 =10

=> HD = 3,6 ( cm )

Ta có: HD + DC = HC 

hay 3,6 + DC = 6,4

=> DC = 2,8

Vì D đối xứng với B qua H

=> AH là trung trực của DB

=> AB = AD

=> Tam giác ABD cân tại A

=> AB = AD = 6 cm 

vì tam giác AHD ~ tam giác CED ( theo câu b )

=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)

hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)

=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )

=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )

Diện tích tam giác DEC là:

SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )

e) CHo mình xin nghỉ. 

28 tháng 3 2022

a: Xét ΔABC vuông tại A  và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có

góc EDC=góc HDA

=>ΔEDC đồng dạng với ΔHDA

=>DE/DH=DC/DA=EC/HA

=>DC*HA=DA*EC

c: DE/DH=DC/DA

=>DE/DC=DH/DA

=>ΔDEH đồng dạng với ΔDCA

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi

2 tháng 7 2021

a. Xét ΔABC và ΔHBA

. BAC=BHA(=90)

. ABH chung

⇒ ΔABC~ΔHBA (g.g)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath