Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: MB = MC; MA = MD (gt)
⇒ Tứ giác ABDC là hình bình hành
Mà: ∠A = 90°
⇒ Tứ giác ABDC là hình chữ nhật (đpcm)
b)
Gọi O là giao điểm của AC và AE
ΔAED có: OA = OE (E đối xứng với A qua BC); MA = MD (gt)
⇒ OM là đường trung bình của ΔAED
⇒ OM // ED (1)
Vì: E đối xứng với A qua BC
⇒ BC là đường trung trực của AE
⇒ BC ⊥ AE hay OM ⊥ AE (2)
Từ (1), (2) ⇒ ED ⊥ AE (đpcm)
c)
Ta có: BC // ED (OM // ED)
⇒ Tứ giác BEDC là hình thang
Ta có: BD = AC (Tứ giác ABDC là hình chữ nhật) (a)
ΔAEC có: CO vừa là đường trung tuyến vừa là đường cao
⇒ ΔAEC cân tại C ⇒ CA = CE (b)
Từ (a), (b) ⇒ BD = EC
Hình thang BEDC có: BD = EC
⇒ Tứ giác BEDC là hình thang cân
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó; E là trung điểm của AB
Xét ΔBAC có
D là trung điểm của BC
DF//AB
Do đó: F là trung điểm của AC
Xét tứ giác ADBM có
E là trung điểm chung của AB và DM
=>ADBM là hình bình hành
c: Xét tứ giác ADCN có
F là trung điểm chung của AC và DN
=>ADCN là hình bình hành
=>AN//CD và AN=CD
Ta có: ADBM là hình bình hành
=>AM//BD và AM=BD
Ta có: AN//CD
AM//BD
mà B,D,C thẳng hàng
nên AN//BC và AM//BC
mà AN,AM có điểm chung là A
nên N,A,M thẳng hàng
Ta có: AM=BD
AN=CD
mà BD=DC
nên AM=AN
mà M,A,N thẳng hàng
nên A là trung điểm của MN
\(a,\) M,E là trung điểm BC,AB nên ME là đtb \(\Delta ABC\)
Do đó \(ME//AC\Rightarrow ME\bot AB(AC\bot AB)\)
\(b,\) Vì E là trung điểm MH và AB nên AMBH là hbh
Mà \(MH\bot AB\) tại E nên AMBH là hình thoi
\(c,\) Để \(AMBH\) là hv thì \(\widehat{AMB}=90^0\Leftrightarrow AM\bot BC\)
Mà AM là trung tuyến ứng cạnh huyền
Vậy để \(AMBH\) là hv thì \(\Delta ABC\) vuông cân tại A
a: Xét ΔABC có
N là trung điểm của BC
D là trung điểm của AC
Do đó: ND là đường trung bình của ΔABC
Suy ra: ND//AB
hay ND⊥AC
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)