Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a) Xét tứ giác ADEM có:
D= 90 độ (DM vuông góc với AB tại D(gt))
A= 90 độ ( Tam giác ABC vuông tại A(gt))
E= 90 độ ( ME vuông góc với AC tại E(gt))
=> Tứ giác ADME là hình chữ nhật
Tik nha
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó:D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hay CMDE là hình bình hành
a , xetys tứ giác adme có :
me//ad (vì me//ac)
md//ae(vì md//ab)
suy ra tứ giác adme là hbh
Bài 1 : Ta có MB = MC ( gt) , ME // AC => E là trung điểm của AB ( đường thẳng qua trung điểm cạnh tam giác . . )
MB = MC ( gt) , MF // AB ⇒ F là trung điểm của AC ( đường thẳng qua trung điểm cạnh tam giác . . . )
⇒ EF là đường trung bình của tam giác ABC . ⇒ EF // BC Vậy tứ giác BCEF là hình thang
. Mặt khác góc B = góc C ( tam giác ABC cân – gt) ⇒ Tứ giác BCEF là hình thang cân.
Bài 2: a/ chứng minh tứ giác có 2 cặp cạnh đối song song ( gt) nên AEGF là hình bình hành.
tứ giác có góc A = 900 ( gt)
Vậy AEGF là hình chữ nhật
b/ vì GF // AB ⇒ FI // EB
EI // BF (gt) ⇒ BEIF là hình bình hành ( 2 cặp cạnh đối // )
c/ Vì AF = FC , GB = GC ( gt) ⇒ GF là đường trung bình của tam giác ABC ⇒ GF = BE = 1/2 AB ⇒ GF = FI ( vì FI = BE do BEIF là hình bình hành)
⇒ GF // AB mà AB ⊥ AC ⇒ GI ⊥ AC tại F
Vậy AGCI là hình thoi ( hai đ/chéo vuông góc tại trung điểm mỗi đường )
d/ Để AGCI là hình vuông thì AC = GI . mà GI = 2GF = 2 EB = AB Vậy AGCI là hình vuông thì AC = AB ⇒ Tam giác ABC vuông cân tại A.
Xét tam giác KAD và HDB có:
DA=DB
^B=^ADK(đồng vị)
^DAK=^BDH(đvị)
=>∆KAD=∆HDB(g.c.g)
=>KA=DH
Mà KA//DH(gt)
=>ADHK là hbh (3)
Xét ∆HAB có:
DA=DB(cmt )=> DH là đường trung tuyến
^AHB=90(gt)
=>DH=1/2AB =>DA=DA (4)
Từ (3) và (4) =>ADHK là hình thoi
a) xét tứ giác ADME có
^A=^ADM=^AEM=90 (gt)
=>ADME là hcn
b)Xét tam giác ABC có:
MB=MC(gt)
ME//AB(ADME là hcn.cmt)
=>EA=EC=>EC=1/2AC (1)
Lại có: MD//AC (ADME là hcn.cmt)
=>DA=DB
=>DM là đường trung bình=>DM=1/2AC (2)
Từ (1) và (2)=>DM=EC
mà DM//AE(E thuộc AC)
=>MDEC là hbh
c) Nối H với E
Xét tam giác HAC có:
EA=EC(cmt)=>HE là đường trung tuyến
^AHC=90(gt)
=>HE=1/2AC
mà DM=1/2AC(cmt)
=>HE=DM
=>MHDE là htc.