Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E K x y D
a. Vì tam giác ABC là tam giác vuông có góc A= 900 và góc C = 360 nên
góc B = 1800 - (900 - 360 ) = 540
b. Xét tam giác ABD và tam giác EBD ta có:
\(\widehat{B_1}=\widehat{B_{ }_2}\) ( vì BD là tia phân giác của góc B)
BD chung
AB = BE ( gt)
=> Tam giác ABD = tam giác EBD ( c.g.c )
c.
Kí hiệu tam giác là t/g nhé
a) t/g ABC vuông tại A có: ACB + ABC = 90o
=> 36o + ABC = 90o
=> ABC = 90o - 36o = 54o
b) Xét t/g ABD và t/g EBD có:
AB = BE (gt)
ABD = EBD ( vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)
c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:
ABD = BAK (so le trong)
AB là cạnh chung
Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)
=> BD = AK (2 cạnh tương ứng) (đpcm)
d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF
Do đó 3 đường này cùng đi qua 1 điểm
Mà BH và CA cắt nhau tại D
Nên EF đi qua D
=> E, D, F thẳng hàng (đpcm)
Câu d sai, lm lại
Nối đoạn FD
t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)
=> BC = BF (2 cạnh tương ứng)
t/g CBD = t/g FBD (c.g.c)
=> CD = FD (...)
t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)
=> CDH = FDH (...)
Có: CDH + CDE + EDB = 180o
Mà CDH = ADB ( đối đỉnh)
= FDH = EDB
Do đó, CDH + CDE + HDF = 180o
=> EDF = 180o
=> E, D, F thẳng hàng (đpcm)