Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow AC=\dfrac{5}{12}\cdot6=2,5\left(cm\right)\\ b,BC=\sqrt{AC^2+AB^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\left(pytago\right)\)
a) Xét tam giác ABC vuông tại A:
\(AC=tan\alpha.AB=\dfrac{5}{12}.6=2,5\left(cm\right)\)
b) Áp dụng đ/lý Pytago trong tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\)
Xét tam giác ABC vuông tại A có \(tan\alpha=\frac{3}{4}=\frac{AC}{AB}=\frac{AC}{8}\Leftrightarrow AC=\frac{3.8}{4}=\frac{24}{4}=6\left(cm\right)\)
Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
Vậy \(AC=6cm;BC=10cm\)
Vì tam giác ABC vuông tại A :
-> tan a = \(\frac{AC}{AB}\) Hay tan a = \(\frac{AC}{8}\)
Lại có tan a = \(\frac{3}{4}\) -. AC= \(\frac{8.3}{4}\)= 6
Xét tam giác ABC vuông tại A có :\(AC^2\)+ \(AB^2\)= \(BC^2\)
Tính ra BC = 10
CHÚNG BẠN HỌC TỐT :)))
Vì tam giác ABC vuông tại A nên:
\(AB^2+AC^2=BC^2\)
=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
=>\(\frac{4}{9}AC^2+AC^2=144\)
=>\(AC^2\left(\frac{4}{9}+1\right)=144\)
=>\(AC^2.\frac{13}{9}=144\)
=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)
=> \(AC=\frac{36\sqrt{13}}{13}\)
=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)
Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)và\(\frac{36\sqrt{13}}{13}\)
Ta có: \(\tan\)\(\alpha\)= tan B =\(\frac{5}{12}\)\(\approx\)230
AC = AB. tan B \(\approx\)6. tan 230 \(\approx\)2,5(cm)
góc C = 900 - góc B \(\approx90^0-23^0\approx67^0\)(hai góc phụ nhau)
BC\(=\frac{AB}{\cos C}\approx\frac{6}{\cos67^0}\approx15,4\)(cm)
Đúng thì k mk cũng mới học nên k pk hk nhak
a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)
Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)
b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)
\(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)
A B C H
a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2
áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:
BC^2=AB^2+AC^2
=15^2+20^2
= 225+400
=625
BC = căn 625=25
Vì ABC là tam giác vuông nên
áp dụng hệ thức lượng, ta dc
AB^2=HB*BC
hay 15^2=HB*25
HB=225/25=9
=)HC=25-9=16
và AH^2=HB*HC
=9*16=144
AH=căn 144=12
câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN
MK vẽ hình hơi xấu bn thông cảm hihi
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)
a, theo đề ta có : \(\frac{AC}{AB}\) = \(\frac{5}{12}\)
=> AC= 6.5:12=2,5
b, ta có: BC= \(\sqrt{AC^2+AB^2}\) = \(\frac{13}{2}\)