Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
Áp dụng định lí Py-ta-go cho tgv ABC ta được:
BC2 = AB2 + AC2
=> BC = \(\sqrt{AB^2+AC^2}\)
= \(\sqrt{6^2}+8^2\)
= 10 cm
tam giác ABC có BD là đường phân giác
=> \(\frac{AD}{DC}\) = \(\frac{AB}{BC}\)
hay \(\frac{AD}{AD+CD}\) = \(\frac{AB}{AB+BC}\)
<=> \(\frac{AD}{8}\) = \(\frac{6}{6+10}\)
=> AD = 3 cm
=> DC = 8 - 3 = 5 cm
phần còn lại tớ chưa giải được :3