Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) có \(ED\perp AC;AB\perp AC\Rightarrow ED//AB\)
\(\Rightarrow\widehat{EDF}=\widehat{FAB}\left(slt\right)\); \(\widehat{FED}=\widehat{FBA}\left(slt\right)\)
Xét \(\Delta EDF\) và \(\Delta BAF\) có :
\(\widehat{EDF}=\widehat{FAB}\left(cmt\right)\)
\(\widehat{FED}=\widehat{FBA}\left(cmt\right)\)
\(\Rightarrow\)\(\Delta EDF\) \(\sim\) \(\Delta BAF\) ( gg)
\(\Rightarrow\frac{FD}{FA}=\frac{FE}{FB}\Leftrightarrow FA.FE=FB.FD\)
a) Xét \(\Delta ABC\) vuông tại A:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=42^2+56^2\)
\(\Leftrightarrow BC=70cm\)
Xét \(\Delta ABC\) có AD là phân giác
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{AB}{AB+AC}=\frac{BD}{BD+CD}\Leftrightarrow\frac{AB}{AB+AC}=\frac{BD}{BC}\Leftrightarrow\frac{42}{42+56}=\frac{BD}{70}\Leftrightarrow BD=\frac{42+70}{42+56}=\frac{8}{7}\)
Vậy BD = \(\frac{8}{7}cm\)
Có BD + DC = BC
\(\Rightarrow DC=BC-BD=70-\frac{8}{7}=\frac{482}{7}cm\)
( Bạn tự vẽ hình nhé )
a) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝ \(\dfrac{DE}{DM}=\dfrac{DC}{DA}\) ( Hệ quả định lý TaLét )
b) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝\(\dfrac{DA}{DM}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 1 )
Xét tam giác DBC có NE//BC ( cùng ⊥ BD )( N∈BD ; E∈CD )
➝ \(\dfrac{DB}{DN}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 2 )
Từ ( 1 ) ( 2 ) ➞ \(\dfrac{DA}{DM}=\dfrac{DB}{DN}=\dfrac{DC}{DE}\)
Mà ( N∈BD ; E∈CD )
➝ MN // AB ( ĐL Talet đảo )
c) Ta có : AB // MN , BC // NE , ME//AC
Mà \(\left\{{}\begin{matrix}\text{BC , NE , BA , MN cùng thuộc bờ mặt phẳng BD}\\\text{BC , NE , CA , ME cùng thuộc bờ mặt phẳng DC}\end{matrix}\right..\text{ }\)
→ \(\widehat{ABC}=\widehat{MNE}\) ; \(\widehat{ACB}=\widehat{MEN}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
➞ ΔMNE cân tại M
➝ MN = ME
Lại có : \(\widehat{MNE}+\widehat{MNB}=90=\widehat{MEN}+\widehat{MBN}\) ( hai góc phụ nhau )
Mà \(\stackrel\frown{MNE}=\stackrel\frown{MEN}\)
➝ \(\widehat{MBN}=\widehat{MNB}\)
➞ Δ MBN cân
➝ BM = MN
Mà MN = ME
➝ MB = ME
➤ ĐPCM
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔDBF=ΔDEC
=>BF=EC và DF=DC
AB+BF=AF
AE+EC=AC
mà AB=AE và BF=EC
nên AF=AC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
a: Ta có: BE\(\perp\)DC
AC\(\perp\)DC
Do đó: BE//AC
Xét ΔDAC có ME//AC
nên \(\dfrac{DM}{DA}=\dfrac{DE}{DC}\)
b: Ta có: NE\(\perp\)BD
BC\(\perp\)BD
Do đó: NE//BC
Xét ΔDBC có NE//BC
nên \(\dfrac{DE}{DC}=\dfrac{DN}{DB}\)
=>\(\dfrac{DN}{DB}=\dfrac{DM}{DA}\)
Xét ΔDBA có \(\dfrac{DN}{DB}=\dfrac{DM}{DA}\)
nên MN//AB
Bài 1 : Bài giải
A B C D E F O
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !