K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạg với ΔHAC

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: góc ADE=90 độ-góc ABD

góc AED=góc BEH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H  có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc DBC

góc ADE=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AED=góc ADE

=>AD=AE

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc EBH

góc ADE=90 độ-góc ABD

góc EBH=góc ABD

=>góc AED=góc ADE

=>AE=AD

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có

góc ACB chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: AE/HE=CA/CH

BD/AD=CB/CA

mà CA/CH=CB/CA

nên AE/HE=BD/AD

=>AE*AD=HE*BD

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

d) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 
10 tháng 7 2021

mk cần phần C và D bn có thể diễn giải chi tiết được không

 

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC