K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. 

1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

2: AM=2,5cm nên BC=5cm

=>AC=4cm

S=3x4/2=6cm2

3: 

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

4: 

Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

13 tháng 10 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

\(\widehat{BAC}=90^0\)

Do đó: ABDC là hình chữ nhật

b: Xét ΔADE có

M,H lần lượt là trung điểm của AD,AE

=>MH là đường trung bình

=>MH//DE

=>DE vuông góc AE

Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)

=>ABED là tứ giác nội tiếp

=>\(\widehat{BDE}=\widehat{EAB}\)

=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)

=>\(\widehat{BDE}=\widehat{C}\)

mà \(\widehat{ACB}=\widehat{ADB}\)

nên \(\widehat{BDE}=\widehat{ADB}\)

=>DB là phân giác của \(\widehat{ADE}\)

6 tháng 11 2023

loading... 

a) Tứ giác ADME có:

∠AEM = ∠ADM = ∠EAD = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do HI = HA (gt)

⇒ H là trung điểm của AI

Do HK = HB (gt)

⇒ H là trung điểm của BK

Tứ giác ABIK có:

H là trung điểm của AI (cmt)

H là trung điểm của BK (cmt)

⇒ ABIK là hình bình hành

⇒ IK // AB

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ IK ⊥ AC

⇒ IK là đường cao của ∆ACI

Lại có:

AH ⊥ BC (do AH là đường cao của ∆ABC)

⇒ CH ⊥ AI

⇒ CH là đường cao thứ hai của ∆ACI

∆ACI có:

IK là đường cao (cmt)

CH là đường cao (cmt)

⇒ AK là đường cao thứ ba của ∆ACI

⇒ AK ⊥ IC

14 tháng 3 2020

A B C H E M

\(\Delta ABC\)vuông tại A, AH là đường cao=> \(AB^2=BH.BC\)(1)

Ta có : AB=AE=> \(\Delta ABE\)vuông cân tại A; có AM là đường trung truyến=> AM là đường cao và \(\widehat{AEM}=45^o\)

\(\Delta ABE\)vuông cân tại A có AM là đường cao=> \(AB^2=BM.BE\)(2)

Từ (1) và (2)=> BH.BC=BM.BE=> \(\frac{BH}{BM}=\frac{BE}{BC}\)

Ta có:  \(\frac{BH}{BM}=\frac{BE}{BC}\)\(\widehat{EBC}\)chung=> \(\Delta BHM~\Delta BEC\)(C-G-C)=>\(\widehat{BHM}=\widehat{BEC}\)

Ta có:\(\widehat{BHM}=\widehat{BEC}\)=> \(180^o-\widehat{BHM}=180^o-\widehat{BEC}\)<=>\(\widehat{MHC}=\widehat{AEM}=45^o\)(3)

Lại có : \(\widehat{AHM}=90^o-\widehat{MHC}=90^o-45^o=45^o\)(4)

Từ (3),(4)=> \(\widehat{MHC}\)=\(\widehat{AHM}\)=> HM là tia phân giác góc AHC.

(Chúc bạn học tốt !)