Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
A B C D H K
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )
a, xet tam giac ADB va tam giac EBD co:
goc ABD = goc EBD (vi BD la tia phan giac cua goc B)
BD chung
goc BAD = goc BED (=90 do)
suy ra tam giac ADB = tam giac EBD
b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:
BC^2 = AB ^2 + AC^2
= 6^2 + 8^2
= 36+64
=100 suy ra BC = 10
ta co tam giac ABC = tam giac EBD nen AB = BE = 6
ta co EC = BC - BE
= 10 - 6
=4
c,d ban tu lm
A B C 6 10 D H K
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
a)xét 2 tam giác vuông ABD và HBD có:
BD(chung)
ABD=CBD(gt)
suy ra tam giác ABD=HBD(CH-GN)
suy ra AD=DH
b)
ta có: tam giác HCD vuông tại H sủy a DC là cạnh lớn nhất trong tam giác đó
suy ra DC>DH mà DH=Ad suy ra AD<DC
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Hình bạn tự vẽ nhé!!!
a) Vì tam giác ABC vuông tại nên theo ĐL Pytogo ta có:
BC2 = AB2 + AC2
=> 102 = 62 + AC2
=> AC2 = 102 - 62
=> AC2 = 64
=> AC = 8 (cm)
b) Vì BD là tia phân giác góc ABC nên
Góc ABD = góc DBH
Xét tam giác ABD và tam giác HBD có:
Góc A = góc BHD (=90 độ)
góc ABD = góc DBH (cmt)
cạnh BD chung
=> tam giác ABC = Tam giác HBD ( ch-gn)
=> AB = HB ( 2 cạnh tương ứng)
Tam giác ABH có AB = BH (cmt)
=> Tam giác ABH cân tại B
Mik k biết làm câu so sánh bạn thông cảm nhé!!!
Các bạn thấy đúng thì k sai thì thôi nha.