K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)

\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay \(BC=\sqrt{193}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)

\(\Leftrightarrow\widehat{B}\simeq60^0\)

\(\Leftrightarrow\widehat{C}=30^0\)

10 tháng 9 2018

a)\(12^2+16^2=20^2\)(144+256=400)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)

\(\Rightarrow\Delta ABC\)vuông tại A

b)Xét tg ABC vuông tại A có đcao AH(cmt)

Ta có:AB.AC=BC.AH(Hệ thức lượng)

          12.16=20.AH

          192=20.AH

           AH=192:20=9.6

c)cosB=AB/BC,cosC=AC/BC

\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)

\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)

\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)

\(\Rightarrow AB.cosB+AC.cosC=20\)

24 tháng 3 2019

a, Sử dụng tỉ số cosC và sinC, tính được

a =  20 3 3 cm, c =   10 3 3 cm và  B ^ = 60 0

b, Sử dụng tỉ số sinB và cosB, tính được:

b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm

c, Sử dụng định lý Pytago và tỉ số sinB, tính được:

c =  5 5 cm, sinB =  10 15 =>  B ^ ≈ 41 , 8 0 ,  C ^ ≈ 48 , 2 0

d, Tương tự c) ta có

a =  193 cm, tanB =  12 7 =>  B ^ ≈ 59 , 7 0 ,  C ^ = 30 , 3 0

31 tháng 8 2019

Đáp án D

30 tháng 8 2018

Đáp án D

5 tháng 7 2019

Áp dụng định lý Pytago cho  vuông tại A có:

Đáp án cần chọn là: B

16 tháng 9 2023

Xét tam giác ABC vuông tại A ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}BH\cdot BC=AB^2\\HC\cdot BC=AC^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm