Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{193}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)
\(\Leftrightarrow\widehat{B}\simeq60^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
a)\(12^2+16^2=20^2\)(144+256=400)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)
\(\Rightarrow\Delta ABC\)vuông tại A
b)Xét tg ABC vuông tại A có đcao AH(cmt)
Ta có:AB.AC=BC.AH(Hệ thức lượng)
12.16=20.AH
192=20.AH
AH=192:20=9.6
c)cosB=AB/BC,cosC=AC/BC
\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)
\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)
\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)
\(\Rightarrow AB.cosB+AC.cosC=20\)
a, Sử dụng tỉ số cosC và sinC, tính được
a = 20 3 3 cm, c = 10 3 3 cm và B ^ = 60 0
b, Sử dụng tỉ số sinB và cosB, tính được:
b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm
c, Sử dụng định lý Pytago và tỉ số sinB, tính được:
c = 5 5 cm, sinB = 10 15 => B ^ ≈ 41 , 8 0 , C ^ ≈ 48 , 2 0
d, Tương tự c) ta có
a = 193 cm, tanB = 12 7 => B ^ ≈ 59 , 7 0 , C ^ = 30 , 3 0
Áp dụng định lý Pytago cho vuông tại A có:
Đáp án cần chọn là: B
Xét tam giác ABC vuông tại A ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BH\cdot BC=AB^2\\HC\cdot BC=AC^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)