K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

mời bạn tham khảo:

ΔDEBcó:

HD=HE(gt)

IB=IE(gt)

=>HTlà đtb củaΔDEB

=>HI//DB;HI=\(\dfrac{BD}{2}\)

CMTT:

=>HK//EC 

HK=EC/2

=>KJ//DK

KJ=DB/2

Ta có:

KJ//DB(Cmt);HI//DB(Cmt)

=>KI//HI(1)

KJ=DB/2;HI=DB/2(Cmt)

=>JK=HI(2)

Từ (1)và(2) suy ra:

HKIJ là Hình bình hành(3)

Mặc khác:

HI//DB(Cmt)=>HI//AB

HK//EC(Cmt)=>HK//AC

mà AB⊥AC(gt)

=>HI⊥HK(4)

Từ (3)và(4)suy ra:

HKJI là hình chữ nhật

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên