Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mời bạn tham khảo:
ΔDEBcó:
HD=HE(gt)
IB=IE(gt)
=>HTlà đtb củaΔDEB
=>HI//DB;HI=\(\dfrac{BD}{2}\)
CMTT:
=>HK//EC
HK=EC/2
=>KJ//DK
KJ=DB/2
Ta có:
KJ//DB(Cmt);HI//DB(Cmt)
=>KI//HI(1)
KJ=DB/2;HI=DB/2(Cmt)
=>JK=HI(2)
Từ (1)và(2) suy ra:
HKIJ là Hình bình hành(3)
Mặc khác:
HI//DB(Cmt)=>HI//AB
HK//EC(Cmt)=>HK//AC
mà AB⊥AC(gt)
=>HI⊥HK(4)
Từ (3)và(4)suy ra:
HKJI là hình chữ nhật
a) Xét ∆ABC có :
D là trung điểm AB
E là trung điểm BC
=> DE là đường trung bình ∆ABC
=> DE//AC , DE = \(\frac{1}{2}AC\)= \(\frac{16}{2}=8\)cm
Xét ∆ABC có :
E là trung điểm BC
F là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)
Xét tứ giác AFED có :
AD//EF ( AB//FE , D\(\in\)AB )
DE//FA ( DE//AC , F \(\in\)AC )
=> AFED là hình bình hành
Mà BAC = 90°
=> AFED là hình chữ nhật
=> DEF= EFA = FAD = ADE = 90°
Vì F là trung điểm AC
=> FA = FC = 8cm
Áp dụng định lý Py - ta -go vào ∆AEF ta có :
AE2 = FE2 + AF2
=> AE = 10cm
b) Xét ∆ABC ta có :
D là trung điểm AB
F là trung điểm AC
=> DF là đường trung bình ∆ABC
=> DF//BC
Xét tứ giác BEFD ta có :
BE//DF ( BC//DF , E \(\in\)BC )
BD//FE ( AB//FE , D\(\in\)AB )
=> BEFD là hình bình hành
c) Chứng minh trên