Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
A B C M I G
Xét tg AGB và tg AGC có
AB=AC
AG chung
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
=> tg AGB = tg AGC (c.g.c)
b/
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
\(\Rightarrow AM\perp BC\)
\(CI\perp BC\)
=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Xét tg BCI có
MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI
\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)
(Tự vẽ hình)
a)
Xét ΔABC cân tại A có AM là đường trung tuyến
=> AM đồng thời là đường phân giác, đường cao của ΔABC
=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)
Vì ΔABC cân tại A
=> AB = AC (Định nghĩa tam giác cân)
Xét ΔABG và ΔACG có:
AB = AC(cmt)
\(\widehat{BAG}=\widehat{CAG}\)(cmt)
AG chung
=> ΔABG = ΔACG(cgc)(đpcm)
b)
Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)
=> GM // IC
Xét ΔBIG có M là trung điểm BC
Mà GM//IC
=> GM là đường trung bình của ΔBIC
=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)
c)
Có AG//IC(cmt)
=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)
Vì AM,BN là 2 đường trung tuyến của ΔABC
Mà AM cắt BN tại G
Nên G là trọng tâm ΔABC
=>AG = \(\dfrac{2}{3}\)AM
=>AG = 2.GM
Mà IC = 2.GM(cm câu b)
=> AG = IC
Xét ΔGAC và ΔICA có:
AG = IC(cmt)
\(\widehat{GAC}=\widehat{ICA}\)(cmt)
AN = NC(BN là đường trung tuyến)
=> ΔGAC = ΔICA(gcg)
=> AI = GC(2 cạnh tương ứng)
Mà ΔABG = ΔACG(cm câu a) => BG = CG
=> AI = BG(1)
Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)
=> \(\widehat{AGB}=\widehat{GBM}+90^0\)
=> \(\widehat{AGB}>90^0\)
=> Cạnh AB lớn nhất trong ΔABG
=> AB>BG(2)
Từ (1) và (2) => AB > AI
=> \(\widehat{AIB}>\widehat{ABI}\)
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Xét ΔDBC có DM/DC=DN/DB
nên MN//BC
=>MN vuông góc với AC
Xét ΔNCA có
NM.CD là các đường cao
NM cắt CD tại M
Do đó: M là trực tâm
=>AM vuông góc với CN