K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

A B C M I G

Xét tg AGB và tg AGC có

AB=AC

AG chung

\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)

=> tg AGB = tg AGC (c.g.c)

b/

\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)

\(\Rightarrow AM\perp BC\)

\(CI\perp BC\)

=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Xét tg BCI có

MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI

\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)

 

 

 

23 tháng 8 2023

(Tự vẽ hình)

a)

Xét ΔABC cân tại A có AM là đường trung tuyến

=> AM đồng thời là đường phân giác, đường cao của ΔABC

=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)

Vì ΔABC cân tại A

=> AB = AC (Định nghĩa tam giác cân)

Xét ΔABG và ΔACG có:

AB = AC(cmt)

\(\widehat{BAG}=\widehat{CAG}\)(cmt)

AG chung

=> ΔABG = ΔACG(cgc)(đpcm)

b)

Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)

=> GM // IC

Xét ΔBIG có M là trung điểm BC

Mà GM//IC

=> GM là đường trung bình của ΔBIC

=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)

c)

Có AG//IC(cmt)

=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)

Vì AM,BN là 2 đường trung tuyến của ΔABC

Mà AM cắt BN tại G

Nên G là trọng tâm ΔABC

=>AG = \(\dfrac{2}{3}\)AM

=>AG = 2.GM

Mà IC = 2.GM(cm câu b)

=> AG = IC

Xét ΔGAC và ΔICA có:

AG = IC(cmt)

\(\widehat{GAC}=\widehat{ICA}\)(cmt)

AN = NC(BN là đường trung tuyến)

=> ΔGAC = ΔICA(gcg)

=> AI = GC(2 cạnh tương ứng)

Mà ΔABG = ΔACG(cm câu a) => BG = CG

=> AI = BG(1)

Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)

=> \(\widehat{AGB}=\widehat{GBM}+90^0\)

=> \(\widehat{AGB}>90^0\)

=> Cạnh AB lớn nhất trong ΔABG

=> AB>BG(2)

Từ (1) và (2) => AB > AI

=> \(\widehat{AIB}>\widehat{ABI}\)