Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là trung điểm BD. Kéo dài AO, cắt BC tại M.
Do \(\widehat{DBE=45^o}\)⇒ΔBED vuông cân tại E, vậy thì \(\widehat{BOE}\)=45o.
Do tam giác BED vuông tại E; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
OB=OD=OE(1)
Do tam giác BAD vuông tại A; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
OB=OD=OA(2)
Từ (1) và (2) ta có OA = OB = OD = OE.
Xét tam giác cân AOB, theo tính chất góc ngoài tam giác:
\(\widehat{BAO}+\widehat{ABO}=\widehat{BOM}\Leftrightarrow2\widehat{BAO}=\widehat{BOM}\)
Tương tự : \(2\widehat{OAE}=\widehat{MOE}\)
Vậy nên \(2\left(\widehat{BAD+\widehat{OAE}}\right)=\widehat{BOM}+\widehat{MOE}\Leftrightarrow2\widehat{BAE}=\widehat{BOE}=90^O\Rightarrow\widehat{BAE}=45^O\)
a: BC=10cm
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
hay AB=AD
c: Xét tứ giác ABED có
H là trung điểm của AE
H là trung điểm của BD
Do đó: ABED là hình bình hành
Suy ra: AB//ED
hay ED\(\perp\)AC
Ta có :
Do H là trung điểm của A'B' nên :
BE // (A'B'C') nên
Trong tam giác vuông BB'H có :
Do đó :
+ Tính khoảng cách từ B đến mặt phẳng (AA'C'C).
Gọi M là điểm đối xứng của H qua A'. Khi đó
Ta có
Trong dựng (Định lý 3 đường vuông góc)
Trong dựng
Xét tam giác vuông có :
Xét tam giác có
A C D B (P) (Q)
Do \(\left(P\right)\perp\left(Q\right)\) và \(\left(P\right)\cap\left(Q\right)=\Delta\)
và \(DB\perp\left(\Delta\right)\left(DB\in\left(Q\right)\right)\)
Nên \(DB\perp\left(P\right)\Rightarrow DB\perp BC\)
Tương tự ta có :
\(CA\perp AD\)
Vì \(\widehat{CAD}=\widehat{DBC}=90^0\) nên CD chính là đường kính hình cầu ngoại tiếp tứ diện ABCD.
Gọi R là bán kính của hinh cầu này thì :
\(R=\frac{1}{2}CD\) (1)
Theo định lý Pitagoc trong 2 tam giác vuông CAD, ABD ta có :
\(CD^2=CA^2+AD^2=CA^2+BA^2+BD^2=3a^2\)
\(\Rightarrow CD=a\sqrt{3}\) (2)
Từ (1) và (2) suy ra \(R=\frac{a\sqrt{3}}{2}\)