K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

B A M C K

a. Vì K là trung điểm của AC

=> AK = KC 

Từ \(\Delta BAK\)và \(\Delta BKC\), TA CÓ:

BK:  cạnh chung 

AK = KC 

AB = BC

\(\Rightarrow\Delta BAK=\Delta BKC\)( C.C.C ) 

B , Ta có : \(\widehat{AKB}\)VÀ \(\widehat{CKB}\)KỀ BÙ 

Mà \(\widehat{BKA}\)\(=BKC\)

=> BK \(\perp\)AC

c , tự làm

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

2 tháng 12 2019

A B C E K

Giả thiếtAB = AC ; KB = KC ; \(\widehat{A}\)= 90O
Kết luận

a) Tam giác AKB = AKC

b) EC//AK

c) CE = CB

2 tháng 12 2019

a) Xét \(\Delta AKB\)và \(\Delta AKC\text{ có : }\hept{\begin{cases}AB=AC\\KB=KC\\AK\text{ chung}\end{cases}\left(c.c.c\right)\Rightarrow\Delta AKB=\Delta AKC}\)

\(\Rightarrow\widehat{B}=C\text{ và }\widehat{ BAK}=\widehat{CAK}=\frac{1}{2}\widehat{A}=45^{\text{O}}\left(\text{góc tương ứng}\right)\)mà \(\widehat{B}+\widehat{C}=90^{\text{O}}\left(\widehat{A}=90^{\text{O}}\right)\Rightarrow\widehat{B}=\widehat{C}=45^{\text{O}}\)

=> \(\widehat{BKA}=180^{\text{O}}-\widehat{B}-\widehat{BAK}=90^{\text{O}}\)

=> AK vuông góc với BC

b) Vì góc C vuông 

=> Góc B + Góc E = Góc C

=>  Góc B + Góc E = 90O

=> Góc E = 45O

Vì góc BAC là góc ngoài của tam giác ACE

=> Góc ACE + Góc E = 90O (vì góc BAC = 90o)

=> Góc ACE = 45o

mà Góc KAC = Góc ACE ( = 45o) và cùng so le trong

=> AK // CE

6 tháng 12 2017

Dễ mà bạn

6 tháng 12 2017

dễ thì làm đi

18 tháng 9 2018

B A C K M 1 2

MK  ko có tài năng hội họa nên hình hơi xấu nha.

a,ta có\( AK=KC\)

mặt \(\not=\)\(AB=BC\) và \(BK\) chung nên \(\Delta ABK=\Delta CBK (c.c.c)\)

b,C1: với những bạn đã học về tam giác cân

ta có: AB=BC. \(\angle B=90^0\) \(\Rightarrow \Delta ABC\) vuông cân tại B có BK là trung tuyến nên BK cũng là đường cao

C2: với những bạn chưa học đến : 

b, ta có \(\Delta ABK=\Delta CBK (c.c.c)\)( cm trên)

\(\Rightarrow \angle K_1=\angle K_2\) mà \(\angle K_1+ \angle K_2=180^o\Rightarrow 2\angle K_1=180^o\Rightarrow \angle K_1=90^o\)

Suy ra \(BK \bot AC\)

c,\(CM\bot AC\) mà \(BK\bot AC\Rightarrow CM//BK\) 

mà tiện cho mk hỏi luôn là làm sao bấm được dấu góc vậy? dấu song song nữa ( trong Latex nha)

15 tháng 4 2016

tự mak vẽ hình ><

a,  ∆ABC cân tại B do  và BK là đường cao

  BK là đường trung tuyến

 K là trung điểm của  AC    

b, ∆ABH = ∆BAK ( cạnh huyền + góc nhọn )

   => BH = AK ( hai cạnh t. ư ) mà AK = 0,5.AC

   => BH = 0,5.AC

 Ta có : BH = CM (BHM =MCB ) mà CK = BH = AC   CM = CK

=> ∆MKC là tam giác cân ( 1 )

Mặt khác : góc MCB = 900 và góc ACB = 300

 => góc MCK = 600 (2)

Từ (1) và (2) => MKC là tam giác đều

c) Vì ∆ABK vuông tại K mà góc KAB = 300 => AB = 2BK = 2.2 = 4cm

Vì ∆ABK vuông tại K nên theo Pitago ta có:

                      

Mà KC = 0,5.AC => KC = AK = √12

KCM đều => KC = KM = 

Theo phần b) AB = BC = 4

                        AH = BK = 2

                       HM = BC (∆BHM = ∆MCB)

Suy ra AM = AH + HM = 6

16 tháng 4 2016

a/tam giác ABC cân tại B do CÂB=góc ACB(=góc MAC)...

c/ vì ...ta có

\(AK=\sqrt{AB^2-BK^2}=\sqrt{16-4}=\sqrt{12}\)

:P

15 tháng 11 2019

Tham khảo

Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath

15 tháng 11 2019

mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v