K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

Vì △ABC vuông cân tại A (gt) => AB = AC và ∠ABC = ∠ACB = 45o 

Để xy không cắt BC <=> xy // BC <=> DE // BC => ∠ABC = ∠BAD = 45o  , ∠ACB = ∠CAE = 45o 

Lại có: +) DE // BC (cmt) mà BD ⊥ DE (gt) 

=> BC ⊥ BD (từ vuông góc đến song song) 

+) DE // BC (cmt) mà CE ⊥ DE (gt) 

=> BC ⊥ CE (từ vuông góc đến song song) 

Xét △BAD vuông tại D có: ∠BAD + ∠ABD = 90o (tổng 2 góc nhọn trong △ vuông) 

=> 45o + ∠ABD = 90o  

=> ∠ABD = 45o mà ∠BAD =45o  

=> ∠ABD = ∠BAD 

=> △ABD vuông cân tại D 

=> BD = DA 

Xét △CAE vuông tại E có: ∠CAE + ∠ACE = 90o (tổng 2 góc nhọn trong △ vuông) 

=>45o + ∠ACE = 90o  

=> ∠ACE = 45o mà ∠CAE = 45o  

=> ∠CAE = ∠ACE 

=> △CAE vuông cân tại E 

=> EA = EC 

Xét △BCD vuông tại B và △EDC vuông tại E 

Có: ∠BDC = ∠DCE (BC // DE)

       DC là cạnh chung 

=> △BCD = △EDC (ch-gn) 

=> BC = DE (2 cạnh tương ứng) 

=> BC = DA + AE 

=> BD + EC = BC (đpcm)

3 tháng 5 2020

Hà Nguyễn

BD+ CE +BC ??
Đề đúng có pk là : BD + CE = BC ??

3 tháng 5 2020

ừ sr bạn nha mình gõ sai

4 tháng 1 2024

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image  
18 tháng 12 2018

xem trên mạng nhé 

a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)

AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét ΔABCΔABC và ΔMDEΔMDE có:

AB = DM (cmt)

BC = DE (cmt)

AC = EM (cmt)

Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)

Xét tứ giác AEMC có

AE//MC

AC//EM

Do đó: AEMC là hình bình hành

Suy ra: Hai đường chéo AM và EC cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác ABMD có

AD//BM

AB//MD

Do đó: ABMD là hình bình hành

Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AM,BD,CE đồng quy