Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác vuông ABH = CAI (c.h-g.n) => BH = AI
Áp dụng Pytago trong tam giác vuông ACI có:
AC² = AI² + IC² hay AC² = BH² + IC²
Đặt AB = AC = a; áp dụng Pytago trong tam giác vuông ABC ta có BC² = 2a²
Vậy BC²/( BH² + CI²) = BC²/ AC² = 2a²/a² = 2
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
AM là cạnh chung
BM = MC ( gt )
\(\Rightarrow\) Tam giác ABM bằng tam giác ACM ( c.c.c)
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
C/m 3 điểm thẳng hàng là tìm trọng tâm của tam giác đóa pạn, có trọng tâm ròi =>D,M.F thẳng hàng
a) Thấy 52=32+42 hay BC2=AB2+AC2
\(\Rightarrow\Delta ABC\) vuông tại A
b)Hình thì chắc bạn tự vẽ được nha
Xét 2\(\Delta ABH\) và\(\Delta DBH\) có:
AB=DB
\(\widehat{BAH}=\widehat{BDH}\)
BH chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)
\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)
c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị
a) Ta có :
-BC2=52=25(1)
-AB2+AC2=32+42=25(2)
-Từ (1)và(2)suy ra BC2=AB2+AC2
-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)
-vậy tam giác ABC là tam giác vuông .
b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có
-BH là cạnh huyền chung
-AB=BD(gt)
-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)
Vậy BH là tia phân giác của góc ABC
a)xét tam giác BCE và tam giác DCE có:
\(\widehat{DBE}=\widehat{BCE}=90^o\)
\(\widehat{BEC}:chung\)
nên tam giác BCE ~ tam giác DBE(g-g)
a, Xét tam giác BCK và tam giác CBH có
góc B = góc C ( tam giác ABC cân )
BC ( chung )
góc BKC = góc CHB (=90độ )
=> tam giác BCK = tam giác CBH( ch-gn)
=> BK=CH ( 2 cạnh tương ứng )
b, ta có : AK = AB-BK
AH= AC-CH
mà AB=AC ( tam giác ABC cân )
BK=CH( cmt)
=>AK=AH
=> \(\frac{AK}{AB}\) = \(\frac{AH}{AC}\)
Xét tam giác AHK và tam giác ACB có
\(\frac{AK}{AB}=\frac{AH}{AC}\) ( CMT)
=> HK//BC (hq đ/ly talet)