Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án đây nha
https://hoidapvietjack.com/q/648113/cho-abc-vuong-can-tai-a-goi-m-la-trung-diem-bc-d-la-diem-thuoc-doan-bm-d-khac-b-
Bạn tham khảo ở đây nha
https://hoidapvietjack.com/q/648113/cho-abc-vuong-can-tai-a-goi-m-la-trung-diem-bc-d-la-diem-thuoc-doan-bm-d-khac-b-
sơ lược
CM: tgiacBAM= tgiacCAM=>^B=^C(1);BM=MA=>tgiacBAM cân tại A=>^B=^BAM(2),từ (1) (2)=> ^BAM=^ACM
a)Ta xét trong tam giác ABH có Góc H =90độ
=>BAHˆ+ABHˆ=90
mà BAHˆ+HACˆ=90=A^(gt)
=>ABHˆ=HACˆ
Xét tam giác BHA và Tam giác AIC có:
AB=AC(gt)
H^=AICˆ=90(gt)
ABHˆ=HACˆ(c/m trên)
=>Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn)
=>BH=AI(hai cạnh tương ứng)
b)Vì Tam giác BHA=Tam giác AIC(c/m trên)
=>IC=AH(hai cạnh tương ứng)
Xét trong tam giác vuông ABH có:
BH2+AH2=AB2
mà IC=AH
=>BH2+IC2=AB2(th này là D nằm giữa B và M)
Ta có thể c/m tiếp rằng D nằm giữa M và C thì ta vẫn c/m được Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn) và BH2+IC2=AC2=AB2
=>BH2+CI2 có giá trị ko đổi
c)Ta xét trong tam giác DAC có IC,AM là 2 đường cao và cắt nhau tại N(AM cũng là đường cao do là trung tuyến của tam giác cân xuất phát từ đỉnh và cũng chính là đường cao của đỉnh đó xuống cạnh đáy=>AM vuông góc với DC)
=>DN chính là đường cao còn lại=>DN vuông góc với AC(là cạnh đối diện đỉnh đó)
d)Ta dễ dàng tính được Tam giác DMN cân tại M=>DM=MN(dựa vào số đo của các góc và 1 số c/m trên)
Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC,Ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn)
=>ME=MF(là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc HICˆ)
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)=>IM là tia phân giác của HICˆ
Sai thôi nha ! k mk
A B C H I M D
^IAC + ^IAB = 90
^HBA + ^BAH = 90
=> ^HBA = ^IAC
xét tam giác BHA và tam giác AIC có : ^BHA = ^AIC =90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác BHA = tam giác AIC (ch-gn)
=> AH = CI
b, AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2 (đl)
M là trđ của BC (Gt) => MC = BC/2 = BM (tc)
=> AM = MC = BM
=> tam giác AMC cân tại M
=> ^MAC = ^MCA
mà ^MCA = ^MBA do tam giác ABC cân tại A (gt)
=> ^MAC = ^MBA
^HBA = ^IAC (câu a)
^MAC + ^IAM = ^IAC
^HBM + ^MBA = ^HBA
=> ^HBM = ^IAM
xét tam giác IAM và tam giác HBM có : AM = CM (cmt)
BH = AI do tam giác BHA = tam giác AIC (câu a)
=> tam giác IAM = tam giác HBM (c-g-c)
a) Xét tam giác vuông ABH và tam giác vuông ACI, có:
BA=AC ( tam giác ABC vuông cân )
Góc ICA = Góc BAH ( cùng phụ góc HAC )
Suy ra: tam giác ABH = tam giác ACI (ch-gn)
b)Ta có : góc ABH = góc IAC ( tam giác?= tam giác?)
Suy ra : góc ABC+ góc CBH = góc HAM + góc MAC (1)
Do tam giác vuông cân có AM là trung tuyến(gt)
Suy ra MA = BC/2 = MC
Suy ra tam giác MAC vuông cân ( MA vừa là trung tuyến, đường cao của tam giác vuông cân)
Suy ra góc MAC = góc MCA = 45 độ
Từ (1) suy ra góc ABC = góc MAC = 45 độ ( góc ABC =45 độ là do tam giác ABC vuông cân)
Vậy góc CBH = góc HAM
Xét tam giác AIM và tam giác BHM, có:
AM = BM (AM= BC/2, cmt)
Góc CBH = góc HAM ( cmt )
AI = BH ( tam giác ? = tam giác ?)
Suy ra : tam giác AIM = tam giác BHM (c-g-c)
Hehe XD