K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H

10 tháng 4 2016

xét tam giác

9 tháng 4 2021

A = 100* => B^ = C^ = 40* 
trên CA lấy điểm E sao cho CB = CE 
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20* 
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10* 
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70* 
=>MEB^ = 60* (1) 
ΔCBM = Δ CEM => MB = ME (2) 
(1) và (2) => BME là tam giác đều MB = BE (1*) 
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30* 
ABE^ = CBE^ - ABC^ = 70* - 40* = 30* 
=> ABM^ = ABE^ (2*) 
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung) 
=> AMB^ = AEB^ = 70*