K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2020

a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp

Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)

Không tồn tại ptct của d'

Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)

b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:

\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt

Phương trình AB:

\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt

Phương trình trung tuyến AM:

\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)

Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)

19 tháng 4 2020

Cảm ơn bạn nhé❤️

30 tháng 3 2017

Đề bài thiếu :

Cho đường tròn (C) có phương trình: x2 + y2 - 4x + 8y - 5 = 0

Giải :

a) Tâm I(2 ; -4), R = 5

b) Đường tròn có phương trình: (x - 2 )2 + (y + 4)2 = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 - 2)(x - 2) + (0 + 4)(y + 4) = 25 <=> 3x - 4y + 3 = 0

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

a: vecto AB=(7;1)

=>(d) có VTPT là (7;1)

Phương trình (d) là;

7(x-6)+1(y+2)=0

=>7x+y-40=0

b: Tọa độ K là:

x=(6-2)/2=2 và y=(4-2)/2=1

B(5;5); K(2;1)

vecto BK=(-3;-4)=(3;4)

=>VTPT là (-4;3)

Phương trình BK là:

-4(x-2)+3(y-1)=0

=>-4x+8+3y-3=0

=>-4x+3y+5=0

c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)

Phương trình (C) là:

(x-5)^2+(y-5)^2=10^2=100

1 tháng 5 2022

`a)` Vì `AM` là đường trung tuyến của `\triangle ABC`

`=>M` là trung điểm của `BC`

`=> M ( 1 ; -2 )`

Ta có: `\vec{AM} = ( -1 ; -2 )`

    `=>\vec{n_[AM]} = ( 2 ; -1 )`

      Mà `A ( 2 ; 0 ) in AM`

`=>` Ptr đường trung tuyến `AM` là: `2 ( x - 2 ) - ( y - 0 ) = 0`

                                       `<=> 2x - y - 4 = 0`

________________________________________________________

`b)` Ta có: `\vec{AC} = ( -2 ; -1 )`

Gọi ptr đường thẳng vuông góc với `AC` là `\Delta`

  `=>` Ptr `\Delta` là: `-2x - y + c = 0`

  `d ( B , \Delta ) = \sqrt{5}`

`=> [ | -2 . 2 - (-3) + c | ] / \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}`

`<=> | c - 1 | = 5`

`<=> c = 6` hoặc `c = -4`

  `=>` Ptr `\Delta` là: `-2x - y + 6 = 0`

                          hoặc `-2x - y - 4 = 0`