Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Chúc bạn học giỏi!
1) Vẽ hình..
2) Bài Làm
a, Ta có: BAHˆ+DAMˆ=90oBAH^+DAM^=90o;BAHˆ+ABHˆ=90oBAH^+ABH^=90o
⇒⇒DAMˆ=ABHˆDAM^=ABH^
Xét tam giác ADM vuông tại M và tam giác BAH vuông tại H ta có:
AD=BA(gt);DAMˆ=ABHˆDAM^=ABH^ (cmt)
Do đó tam giác ADM=tam giác BAH(cạnh huyền - góc nhọn)
=> DM=AH(cặp cạnh tương ứng) (đpcm)
b, Ta có: HACˆ+NAEˆ=90oHAC^+NAE^=90o;HACˆ+ACHˆ=90oHAC^+ACH^=90o
⇒⇒ NAEˆ=ACHˆNAE^=ACH^
Xét tam giác AEN vuông tại N và tam giác CAH vuông tại H ta có:
AE=CA(gt); NAEˆ=ACHˆNAE^=ACH^ (cmt)
Do đó tam giác AEN=tam giác CAH(cạnh huyền - góc nhọn)
=> EN=AH(cặp cạnh tương ứng)
mà DM=AH(cm câu a)
nên EN=DM
Gọi giao điểm của MN và DE là I (bạn tự thêm điểm trên hình nha mình quên)
Ta có: 90o−DIMˆ=90o−EINˆ→IDMˆ=IENˆ90o−DIM^=90o−EIN^→IDM^=IEN^
Xét tam giác DMI và tam giác ENI ta có:
DMIˆ=ENIˆ(=90o)DMI^=ENI^(=90o);DM=EN(đã cm);MDIˆ=NEIˆMDI^=NEI^(cmt)
Do đó tam giác DMI=tam giác ENI(g.c.g)
=> DI=EI(cặp cạnh tương ứng)
=> MN đi qua trung điểm của DE(đpcm)
Xét tam giác AND và BHA có:
DA = AB ( gt )
DNA = AHB ( = 90độ )
NDA=BAH(cùng phụ với DAN)
=>tam giác AND=BHA(ch-gn)
=>DN=AH nối A với E.giao diem giữa MNvà DE là O
vì DM VUÔNG GÓC AH EN VUÔNG GÓC AH =>DM song song
EN =>góc MEO=MDO XÉT TAM GIÁC MEA VÀ HAC CÓ
EA=AC
AME=AHC
MAE=ACH
=>TAM GIÁC MEA=HAC
=>ME=AH MÀ DM=AH
=>ME=DM
XÉT TAM GIÁC DNO VÀ EMO CÓ
DN=ME
DMN=ENM
EDM=NEO
=>TAM GIÁC DNO=NEO=>DO=OE
MN đi qua trung điểm DE
A B C D E G F H M N
ta có góc DAC = góc EAB = 90 độ (gt)
suy ra \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\) (vì tia AB nằm giữa 2 tia AD và AC , tia AC nằm giữa 2 tia AE và AB )
hay \(\widehat{DAC}=\widehat{EAB}\)
\(\Delta DAC\)và\(\Delta BAE\)có \(\hept{\begin{cases}AD=AB\left(gt\right)\\\widehat{DAC}=\widehat{EAB}\left(cmt\right)\\AE=AC\left(gt\right)\end{cases}}\)
do đó \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)
suy ra \(DC=BE\)(2 góc tương ứng)
và \(\widehat{EBA}=\widehat{CDA}\)( 2 góc tương ứng )
gọi giao điểm của AB và CD là G , giao điểm của DC và BE là F
\(\Delta ADG\)và \(\Delta GBF\)có \(\hept{\begin{cases}\widehat{D}=\widehat{B}\left(cmt\right)\\\widehat{DGA}=\widehat{BGF}\\\Rightarrow\widehat{BFG}=\widehat{DAG}=90^o\end{cases}}\)(đối đỉnh)
hay \(BE⊥DC\)
b) ta có góc DAH là góc ngoài của tam giác AMD
suy ra \(\widehat{DAH}=\widehat{AMD}+\widehat{ADM}\) hay \(\widehat{DAB}+\widehat{BAH}=\widehat{AMD}+\widehat{ADM}\)(vì tia AB nằm giữa 2 tia AD và AH )
mà \(\widehat{DAB}=\widehat{AMD}=90^o\)\(\Rightarrow\widehat{BAH}=\widehat{ADM}\)
\(\Delta ABH\)và\(\Delta DAM\)có \(\hept{\begin{cases}DA=BA\left(gt\right)\\\widehat{BAH}=\widehat{ADM}\left(cmt\right)\end{cases}}\)
do đó \(\Delta ABH=\Delta DAM\)(cạnh huyền - góc nhọn )
suy ra AH =DM ( 2 cạnh tương ứng )
theo đề và từ hình vẽ ta có MN trùng AH
ta có góc EAH là góc ngoài của tam giác ANE
\(\Rightarrow\widehat{EAH}=\widehat{ANE}+\widehat{AEN} hay \widehat{EAC}+\widehat{HAC}=\widehat{ANE}+\widehat{AEN}\)
mà \(\widehat{EAC}=\widehat{ANE}=90^o\)\(\Rightarrow\widehat{HAC}=\widehat{AEN}\)
\(\Delta ACH\)và\(\Delta EAN\)có
cạnh huyền AC = cạnh huyền AE
\(\widehat{HAC}=\widehat{AEN}\left(cmt\right)\)
do đó \(\Delta ACH=\Delta EAN\)(cạnh huyền góc nhọn )
suy ra AH = NE ( 2 cạnh tương ứng )
mà AH =DM
suy ra DM = NE
ta có \(DM⊥NH;EN⊥NH\Rightarrow\)DM//EN
gọi giao điểm của DE và NH là T
xét tam giác vuông MTD và tam giác vuông NTE
góc MDT = góc NET ( so le trong )
DM = NE (cmt)
do đó \(\Delta MDT=\Delta NET\)(cạnh huyền góc nhọn )
suy ra DN = NE ( 2 cạnh tương ứng ) (1)
\(\Delta MDT\)và \(\Delta NET\)có \(\hept{\begin{cases}\widehat{MDT}=\widehat{NET}\\\widehat{DMT}=\widehat{ENT}=90^o\\\Rightarrow\widehat{DTM}=\widehat{ETN}\end{cases}}\)
ta có \(\widehat{NTE}+\widehat{MTE}=180^o\)( kề bù )
mà \(\widehat{NTE}=\widehat{DTM}\left(cmt\right)\)\(\Rightarrow\widehat{MTE}+\widehat{DTM}=180^o\)hay D;N;E thẳng hàng (2)
từ (1) và (2) suy ra N là trung điểm D;E
hay MN và AH đi qua trung điểm DE
câu c gửi bạn sau mk đi học r
chúc bạn học tốt
chịu