Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có góc DFC=DBC(2 góc đồng vị) Mà DFC = FCB (DF// BC ; 2 góc so le trong) =>DBC=FCB .Mà ABC=ACB( tg ABC cân) =>FBD=DCF Xét 2 tg AFC;tg ADB Góc A chung AC=AB FBD =DCF(cmt) =>tg AFC= tg ADB(g-c-g)
ta có tam giác ABC=tam giác DEF
có góc A=55 độ;góc E=75 độ
tam giác ABC=tam giác DEF,góc A=55 độ
=>góc A=góc D=55 độ
góc E=75 độ=>góc E=góc B=75 độ
xét tam giác ABC có:A+B+C=180 độ
=>góc C=180 -(góc A+góc B)
=>góc C=50 độ
Vì tam giác ABC=tam giác DEF,góc C=50 độ
=>góc F=góc C=50 độ
vậy ....
tick nha các bạn
A B C F D E H K O
+) Ta có: Góc DAC = DAB + BAC = 90o + BAC
Góc BAE = CAE + BAC = 90o + BAC
=> góc DAC = BAE
Xét tam giác DAC và BAE có: DA = BA ; góc DAC = BAE; AC = AE
=> tam giác DAC = BAE (c-g-c) => DC= BE và góc AEB = ACD
Gọi O là giao của CD và BE; H là giao của AC và BE
+) Xét Tam giác AEH vuông có: Góc AEH + AHE = 90o
Mà góc AEH = ACD ; AHE = OHC ( đối đỉnh)
=> góc ACD + OHC = 90o
Xét tam giác HOC có góc HOC = 180o - ( ACD + OHC) = 90o => BOC = 90o ( kề bù)
- Gọi K là giao của CD và BF
ta có: góc KFC = KOB ( cùng = 90o); góc OKB = FKC (đối đỉnh)
=> góc OBF = FCK hay EBF = FCD
+) Xét tam giác FCD và FBE có: FC = FB (gt); góc FCD = FBE ; CD = BE ( chứng minh trên)
=> tam giác FCD = FBE (c- g- c)
=> FD = FE => tam giác FDE cân tại F (*)
Lại có: góc DFC = BFE mà góc DFC = DFB + BFC ; góc BFE = BFD +DFE
=> góc BFC = DFE ; góc BFC = 90o ( giả thiết) => góc DFE = 90o => tam giác DFE vuông tại F (**)
Từ (*)(**) => tam giác DFE vuông cân tại F
D E F Q F O ) 60 o ) ) )
Bài làm
a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )
=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)
hay \(2.\widehat{OEF}=\widehat{DEF}\)
Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )
=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
hay \(\widehat{2DFO}=\widehat{DFE}\)
Xét tam giác DEF có:
\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )
hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)
=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)
=> \(\widehat{OEF}+\widehat{OFE}=60^0\)
Xét tam giác OEF có:
\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)
hay \(60^0+\widehat{EOF}=180^0\)
=> \(\widehat{EOF}=180^0-60^0=120^0\)
Vậy \(\widehat{EOF}=120^0\)
Xét tam giác DEF có:
EP là tia phân giác của góc E
FQ là tia phân giác của góc F
Mà hai tia phân giác này cắt nhau ở O
=> O là tâm của đường tròn nội tiếp tam giác.
=> OQ = OP
b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF
# Học tốt #
Câu hỏi của Duy Đinh Tiến - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này nhé!
A B C D E F
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)
\(\Delta DEF\) cho ta \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)
\(\Rightarrow\widehat{D}=180^0-\left(\widehat{E}+\widehat{F}\right)\)
\(\Rightarrow\widehat{D}=180^0-\left(70^0+60^0\right)=180^0-130^0=50^0\)
\(Xét\) \(\Delta ABCvà\Delta DEFcó\)
\(\widehat{A}=\widehat{D}\left(=50^0\right)\)
AB=DE
AC=DF
\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)
Vậy \(\Delta ABC=\Delta DEF\)