K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2020

Cho tam giác ABC, điểm I nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh đối diện theo thứ tự ở D, E, F. Đường thẳng đi qua I và song song với BC cắt DE, DF theo thứ tự ở N, M. Chứng minh IN = IM

a: Xét ΔBAC vuông tại A và ΔDCB vuông tại C có

BA/DC=AC/CB

=>ΔBAC đồng dạng với ΔDCB

b: ΔBAC đồng dạng với ΔDCB

=>góc ACB=góc CBD

=>AC//BD

a: Xét ΔABC có

BK,CI là đường cao

BK cắt CI tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc HBC+góc HCB

=90 độ-góc ABC+90 độ-góc ACB

=180 độ-góc ABC-góc ACB

=góc BAC=70 độ

=>góc BHC=110 độ