Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác BHD và tam giác CKD có :
góc BHD = góc CKD = 90 do ...
góc HDB = góc CDK (đối đỉnh)
=> tam giác BHD ~ tam giác CKD (g - g)
b, xét tam giác ABH và tam giác ACK có :
góc AHB = góc AKC = 90 do ...
góc BAH = góc CAH do AD là phân giác của góc BAC (gt)
=> tam giác ABH ~ tam giác ẠCK (g.g)
a) - Ta có: SABCD=AH.BC=AK.AB.
=>\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\)
- Ta có: \(\widehat{ABC}+\widehat{BAD}=180^0\) (AD//BC).
=>\(\widehat{ABC}+\widehat{BAH}+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(90^0+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(\widehat{HAK}+\widehat{KAD}=90^0\) mà \(\widehat{KAD}+\widehat{ADK}=90^0\) (tam giác ADK vuông tại K) nên \(\widehat{HAK}=\widehat{ADK}\) mà \(\widehat{ADK}=\widehat{ABC}\) (ABCD là hình bình hành) nên\(\widehat{HAK}=\widehat{ABC}\)
- Xét tam giác AKH và tam giác BCA có:
\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\) (cmt)
\(\widehat{HAK}=\widehat{ABC}\) (cmt)
=> Tam giác AKH ∼ Tam giác BCA (c-g-c).
b) - Ta có: Tam giác AKH ∼ Tam giác BCA (cmt) nên:
\(\widehat{AKH}=\widehat{ACB}=40^0\) (2 góc tương ứng)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của AH
=>IA=IH
a, tam giac AHE và ABH có:
BAH là góc chung
góc AEH = AHB = 90
Nên tg AHE đồg dag vs tg ABH (g.g)
b, Áp dụng định lí Py-ta-go vào tam giac vuông AHB và AHC tính dc BH và CH
=> BC = BH +CH
c, AHE đồng dạng ABH (theo a) => AE/AH = AH/AB => AE.AB = AH^2 (1)
Tương tự: AHF đồg dag ACH (g.g) => AF/AH = AH/AC => AF.AC = AH^2 (2)
Từ (1) và (2) => AE.AB = AF.AC => AE/AF = AC/AB
=> AFE đồng dạng ABC (c.g.c)