K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

Ta có hình vẽ:

A B C B' C' D E

a/

Ta thấy : GÓC ABB' = GÓC ACC' [ vì cùng phục với góc BAC ] => GÓC ABD = GÓC ECA [ vì kề bù với hai góc bằng nhau]

Xét tam giác ABD  và tam giác ECA  có :

BD = CA ; Góc ABD = Góc ECA ; AB = EC

=> Tam giác ABD = Tam giác ECA [  cạnh - góc -cạnh]

b/

Theo câu a , tam giác ABD = tam giác ECA  

=> * AD = AE [1] ;

  *  Góc ADB = Góc EAC  MÀ  góc ADB + góc B'AD = 90 độ [vì tam giác AB'D vuông tại B']

                                       => Góc EAC +Góc B'AD = 90 độ

                                       => Góc DEA = 90 độ [2]

Từ [1] và [2] => tam giác DAE vuông cân tại A

 

 

21 tháng 5 2017

 a,chứng minh gócABD bằng góc ECA bằng góc ngoài (= BAM + 90 độ)

Tam giác ABD = tam giác ECA (c-g-c)

b, AD = AE (2 cạnh tương ứng) suy ra tam giác DAE cân tại a (định nghĩa)

Tam giác ADM vuông tại M suy ra ADM +DAM=90 độ mà góc ADM = EAC (2 góc tương ứng)

Suy ra DAM + EAC = 90 ĐỘ suy ra góc DAE = 90 độ suy ra tam giác DAE vuông cân tại A 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
26 tháng 1 2015

a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )

BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)

b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì. 

Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM

c) Xét 2 tam giác EKC và tam giác DHB vuông tại K  và H

Ta có: EC = DB

Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)

=> BH = CK 

 

31 tháng 3 2016

Bạn nguyen khoi nguyen ơi, ở câu b thì cho m là trung diểm bc, ko phaj de đâu

9 tháng 5 2018

ABCHIEDNM
 

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC(tam giác ABC cân tại A)

Góc A chung 

=> Tam giác ABD=tam giác ACE(ch-gn)

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
                 Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)

\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)

Do đó tam giác BHC cân tại H

21 tháng 1 2017

nếu cậu biết câu c mách tớ

21 tháng 1 2017

nhanh lên tớ cần gấp trong hôm nay

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE