K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

                                                                       BẠN TỰ VẼ HÌNH NHA

                                                                                       Giải 

                                    Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:

   a)                      Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =S​tam giác ABC                    

                   <=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah  <=> (1/2)a.(x+y+z)=(1/2)ah      

              <=>x+y+z=h không phụ thuộc vào vị trí của điểm M

   b)                    x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ;  z2+x2\(\ge\)2zx

             =>2.(x2+y2+z2)  \(\ge\)2xy+2xz+2yz

             =>3.(x2+y2+z2)   \(\ge\)x2+y2+z2+2xy+2xz+2yz

            =>x2+y2+z2     \(\ge\)(x+y+z)2/3=h2/3  không đổi

                     Dấu "=" xảy ra khi x=y=z

           Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC

20 tháng 7 2017

\(a.\)Ta có:    \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
                      \(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
                      \(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
   mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.b) So sánh hai tam giác ABC và INC.c) Chứng minh: góc MIN = 900.d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi...
Đọc tiếp

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.

1
20 tháng 9 2017

d) không có vị trí điểm I