Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ trung tuyến CF của tam giác ABC, trên tia đối của FC lấy điểm N sao cho FN = FC.
C/m được: \(\Delta ANF=\Delta BCF\left(c-g-c\right)\Rightarrow AN=BC\)
Xét \(\Delta CAN\)có AN + AC > NC ( bất đẳng thức tam giác )
\(\Rightarrow AC+BC>NC\)
Vì G là trọng tâm của tam giác ABC nên CF = 3GF \(\Rightarrow NC=6GF\left(1\right)\)
Ta sẽ chứng minh: nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)
Giả sử \(GF< \frac{AB}{2}\)hay \(GF< AF=BF\)thì \(\widehat{FAG}< \widehat{AGF};\widehat{FBG}< \widehat{BGF}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\Rightarrow\widehat{ABG}+\widehat{BAG}< \widehat{FGB}+\widehat{FGA}=\widehat{AGB}\le90^0\)
Xét tam giác AGB có \(\widehat{AGB}+\widehat{BAG}+\widehat{AGB}< 90^0+90^0=180^0\)(vô lí)
Vậy nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)(2)
Từ (1) và (2) suy ra \(NC\ge3AB\Rightarrow AC+BC>3AB\left(đpcm\right)\)
A B C M I G
Xét tg AGB và tg AGC có
AB=AC
AG chung
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
=> tg AGB = tg AGC (c.g.c)
b/
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
\(\Rightarrow AM\perp BC\)
\(CI\perp BC\)
=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Xét tg BCI có
MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI
\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)
(Tự vẽ hình)
a)
Xét ΔABC cân tại A có AM là đường trung tuyến
=> AM đồng thời là đường phân giác, đường cao của ΔABC
=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)
Vì ΔABC cân tại A
=> AB = AC (Định nghĩa tam giác cân)
Xét ΔABG và ΔACG có:
AB = AC(cmt)
\(\widehat{BAG}=\widehat{CAG}\)(cmt)
AG chung
=> ΔABG = ΔACG(cgc)(đpcm)
b)
Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)
=> GM // IC
Xét ΔBIG có M là trung điểm BC
Mà GM//IC
=> GM là đường trung bình của ΔBIC
=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)
c)
Có AG//IC(cmt)
=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)
Vì AM,BN là 2 đường trung tuyến của ΔABC
Mà AM cắt BN tại G
Nên G là trọng tâm ΔABC
=>AG = \(\dfrac{2}{3}\)AM
=>AG = 2.GM
Mà IC = 2.GM(cm câu b)
=> AG = IC
Xét ΔGAC và ΔICA có:
AG = IC(cmt)
\(\widehat{GAC}=\widehat{ICA}\)(cmt)
AN = NC(BN là đường trung tuyến)
=> ΔGAC = ΔICA(gcg)
=> AI = GC(2 cạnh tương ứng)
Mà ΔABG = ΔACG(cm câu a) => BG = CG
=> AI = BG(1)
Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)
=> \(\widehat{AGB}=\widehat{GBM}+90^0\)
=> \(\widehat{AGB}>90^0\)
=> Cạnh AB lớn nhất trong ΔABG
=> AB>BG(2)
Từ (1) và (2) => AB > AI
=> \(\widehat{AIB}>\widehat{ABI}\)
vì tg ABC cân tại A
=> AM là đường phân giác
=>góc BAG = góc CAG (t/c đường phân giác )
xét tam giác ABG và tam giác AGC có
góc BAG = góc CAG (cmt)
AG : chung
AB = AC( gt )
=> tg AGB = tg AGC( C-G-C )