K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Lời giải:

Tam giác $ABC$ có đường trung tuyến $AM$ bằng 1 nửa cạnh đối diện $BC$ nên $ABC$ là tam giác vuông tại $A$ (tính chất quen thuộc)

$\Rightarrow APQ$ là tam giác vuông tại $A$

Xét tam giác vuông $APQ$ có đường cao $AG$, áp dụng công thức hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{AP^2}+\frac{1}{AQ^2}=\frac{1}{AG^2}(1)$

Mà $G$ là trọng tâm tam giác $ABC$ nên $AG=\frac{2}{3}AM=\frac{2}{3}.\frac{BC}{2}=\frac{BC}{3}(2)$

Từ $(1);(2)\Rightarrow \frac{1}{AP^2}+\frac{1}{AQ^2}=\frac{9}{BC^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Hình vẽ: