K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

ta có\(MI=\frac{1}{2}DE=\frac{a.m}{a+2m}\)ko đổi

=> I luôn cách M một đoạn ko đổi nên tập hợp các điểm I là đường tròn tâm M , bán kính \(MI=\frac{a.m}{a+2m}\)( trừ giao điểm của nó zới BC)

6 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\)\(AI=\frac{2}{3}AM\)

 \(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)

\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)

Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)

\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)

b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)

\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)

Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)

c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)

9 tháng 7 2021

lời giải của bạn rất hay !

 

22 tháng 3 2020

A B C M D E

a) Ta có MD là phân giác \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\left(1\right)\)

ME là phân giác \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\left(2\right)\)

Mà MB=MC (AM là trung tuyến)\(\Rightarrow\frac{AM}{BM}=\frac{AM}{MC}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\)=> DE//BC (định lý Talet đào) (đpcm)

Nguồn: Tuyết Nhi Melody

14 tháng 2 2022

Khi BC cố định và AH không đổi thì DE không đổi. Mà MD vuông góc ME. Suy ra MI = DE/2 không đổi. Vậy I chạy trên đường tròn tâm M đường kính DE. Giới hạn tại đoạn BC