Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hinh nhu de sai thi phai ban ah.Ban thu coi lai coi xem co dieu kien nao cua tam giac ABC khong ?
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math
bn vào Link này xem thử nhé :
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google
Hok tốt
# EllyNguyen #
Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
A B C D E N M Q P
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét hai \(\Delta ABC\)và \(ADE\)có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\)(vì hai góc đối đỉnh)
\(AC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)
b) \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng)
Mà hai góc này là vị trí so le nên
\(DE\)// \(BC\)
đpcm.
c) đang nghĩ
a ) Xét \(\Delta\)ABC và \(\Delta\)ADE có :
- AB = AD ( giả thiết )
- AC = AE ( giả thiết )
- BÂC = DÂE ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADE ( c - g - c ) ( đpcm )
b )Ta có : \(\Delta\)ABC = \(\Delta\)ADE ( cm câu a )
\(\Rightarrow\)DÊA = Góc ACB ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)ED // BC ( đpcm )
c ) #Theo mình câu c là M là trung điểm BE và N là trung điểm DC nhé#
Xét \(\Delta\)BEC có :
- M là trung điểm BE
- A là trung điểm CE
\(\Rightarrow\)AM là đường trung bình của \(\Delta\)BEC
\(\Rightarrow\)AM // BC ( 1 )
Xét \(\Delta\)BDC có :
- A là trung điểm BD
- N là trung điểm DC
\(\Rightarrow\)AN là đường trung bình của \(\Delta\)BDC
\(\Rightarrow\)AN // BC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)M , A , N thẳng hàng ( Theo tiên đề Ơ - clit )
\(AD=AC\Rightarrow\)△CAD cân tại A mà AM là trung tuyến.
\(\Rightarrow\)AM cũng là đường phân giác.
\(\Rightarrow\widehat{MAE}=\dfrac{\widehat{BAE}}{2}\left(1\right)\)
\(AE=AB\Rightarrow\)△BAE cân tại A mà AN là trung tuyến.
\(\Rightarrow\)AN cũng là đường phân giác.
\(\Rightarrow\widehat{CAN}=\dfrac{\widehat{CAD}}{2}\left(2\right)\)
Ta có: \(\widehat{BAE}=\widehat{CAD}\) (đối đỉnh), nên từ (1) và (2) suy ra:
\(\widehat{EAM}=\widehat{CAN}\)
Mà \(\widehat{EAM}+\widehat{CAM}=180^0\) (kề bù)
\(\Rightarrow\widehat{CAN}+\widehat{CAM}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0\)
\(\Rightarrow\)M,A,N thẳng hàng.
AD=AC mà bn