Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F D E G
Theo giả thiết ta có AD=DF=FB.
Có nghĩa là: D là trung điểm của AF, F là trung điểm của DB
Xét tam giác AFG, ta có:
- D là trung điểm của AF
- Mà DE // FG
\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm
Xét hình thangDECB, ta có:
- F là trung điểm của DB
- FG // BC
=> G là trung điểm
=> GE =GC
Mà EG=GA (cmt)
=> GE=GC=GA
Tam giác AFG có DE là đường trung bình
=>DE=\(\frac{1}{2}\)FG
Ta có FG là đường trung bình cua hình thang DECB
=>FG = \(\frac{DE+BC}{2}\)
Ta phải chứng minh DE+FG=BC
\(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC
\(\frac{1}{2}\)(FG+DE+BC)=BC
FG+DE+BC= 2BC
FG+DE = 2BC - BC
FG+DE = BC
b) ta có FG= \(\frac{DE+BC}{2}\)
2FG= \(\frac{1}{2}\)FG +9
2FG - \(\frac{1}{2}\)FG = 9
\(\frac{3}{2}\)FG =9
=> FG=9:\(\frac{3}{2}\)
FG=6cm
mà FG=2DE
=>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm
Câu 2:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
mà góc B=góc C
nên BDEC là hình thang cân
b: Xét ΔDEB có
N là trung điểm của DE
M là trung điểm của DB
Do đó: MN là đường trung bình
=>MN//EB và MN=EB/2(1)
Xét ΔECB có
P là trung điểm của EC
Q là trung điểm của BC
Do đó: PQ là đường trung bình
=>PQ//BE và PQ=BE/2(2)
từ (1) và (2) suy ra MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔDEC có
N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình
=>NE=DC/2=NM
=>NMQP là hình thoi
A B C D E K G a
Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :
+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\) \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)
+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\) \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)
+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)
Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)
\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)
A B C D E K G
Ta có:
+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)
+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)
+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)
Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK
Mặt khác A, K, G thẳng hàng
=> A là trung điểm KG
a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC