K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

21 tháng 8 2017

Hình vẽ nè:

Cho tam giác ABC,Trên cạnh AB lấy điểm D và E sao cho AD = BE,Qua D và E vẽ các đường song song với BC,Chứng minh DM + EN = BC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho tam giác ABC,Trên cạnh AB lấy điểm D và E sao cho AD = BE,Qua D và E vẽ các đường song song với BC,Chứng minh DM + EN = BC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Có vẻ hơi khó hiểu nhỉ

Nhưng ko sao 

bn tk 

Cho 

mik 

nha

15 tháng 4 2020

A B C D M E M F 1 2 1 2 3

Kẻ NF // AB (F thuộc BC)

Xét tam giác BEF và tam giác NFE có:

BEF = NFE (2 góc so le trong, NF // BE)

FE chung

EFB = FEN (2 góc so le trong, EN // FB)

=> Tam giác BEF = Tam giác NFE (g.c.g)

=> BE = NF (2 cạnh tương ứng)

mà BE = AD (gt)

=> AD = NF

Xét tam giác ADM và tam giác NFC có:

MDA = CFN (2 góc đồng vị, DM // FC)

DA = FN (chứng minh trên)

DAM = FNC (2 góc đồng vị, AD // NF)

=> Tam giác ADM = Tam giác NFC (g.c.g)

=> DM = FC (2 cạnh tương ứng)

mà EN = BF (tam giác BEF = tam giác NFE)

=> DM + EN = BF + FC = BC

6 tháng 12 2016

qua N kẻ đường thẳng song song với AB cắt BC tại K .

Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)

nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC

Suy ra DM+EN=BK+CK=BC(dpcm)

28 tháng 12 2017

Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.

Xét ∆BEK và ∆NKE, ta có:

ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)

EK cạnh chung

ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)

Suy ra: ∆BEK = ∆NKE (g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét ∆ADM và ∆NKC, ta có:

ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)

AD = NK (vì cùng bằng BE)

ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)

Suy ra: ∆ADM = ∆NKC (c.g.c)

=>DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM