Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Gọi D là trung điểm BC, trên đoạn BC lấy điểm E sao cho \(BM=CE\).
-AE cắt NP tại F, MF cắt AD tại G.
\(MC=3MB;MC+MB=BC\Rightarrow MB=\dfrac{1}{4}BC\Rightarrow CE=\dfrac{1}{4}BC\)
\(NA=3NC;NA+NC=AC\Rightarrow NA=\dfrac{1}{4}AC\)
-△ABC có: \(\dfrac{CE}{BC}=\dfrac{AN}{AC}=\dfrac{1}{4}\Rightarrow\)NE//AB (định lí Ta-let đảo)
\(\Rightarrow\dfrac{NE}{AB}=\dfrac{CE}{BC}=\dfrac{1}{4}\)mà \(\dfrac{AP}{BC}=\dfrac{1}{4}\Rightarrow NE=AP\)
-Tứ giác ANEP có: \(NE=AP\), NE//AP.
\(\Rightarrow\)ANEP là hình bình hành \(\Rightarrow\)F là trung điểm của AE và PN.
-Có: \(BD=CD;BM=CE\Rightarrow BD-BM=CD-CE\Rightarrow MD=ED\Rightarrow\)D là trung điểm ME.
-△AME có: Trung tuyến AD cắt trung tuyến MF tại G.
\(\Rightarrow\)G là trọng tâm của △AME \(\Rightarrow\dfrac{AG}{AD}=\dfrac{2}{3};\dfrac{MG}{MF}=\dfrac{2}{3}\)
-△ABC có: AD trung tuyến, G thuộc AB, \(\dfrac{AG}{AD}=\dfrac{2}{3}\)
\(\Rightarrow\)G là trọng tâm △ABC (1).
-△MNP có: MF trung tuyến, G thuộc MF, \(\dfrac{MG}{MF}=\dfrac{2}{3}\)
\(\Rightarrow\)G là trọng tâm △MNP (2).
-Từ (1) và (2) ta suy ra đpcm.
Bài 2:
A B C M N P
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)