K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!

27 tháng 12 2017

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
 

17 tháng 12 2023

a: Ta có: ABDE là hình vuông

=>AD là phân giác của góc BAE và \(\widehat{BAE}=\widehat{BDE}=\widehat{DEA}=\widehat{DBA}=90^0\)

AD là phân giác của góc BAE

=>\(\widehat{BAD}=\widehat{EAD}=\dfrac{\widehat{BAE}}{2}=45^0\)

Ta có: ACFK là hình vuông

=>AF là phân giác của góc KAC và \(\widehat{CAK}=\widehat{AKF}=\widehat{CFK}=\widehat{ACF}=90^0\)

\(\widehat{BAK}=\widehat{BAC}+\widehat{CAK}\)

\(=90^0+90^0=180^0\)

=>B,A,K thẳng hàng

AF là phân giác của góc CAK

=>\(\widehat{KAF}=\widehat{CAF}=\dfrac{1}{2}\cdot90^0=45^0\)

=>\(\widehat{DAB}=\widehat{FAK}\)(=45 độ)

mà \(\widehat{FAK}+\widehat{BAF}=180^0\)(hai góc kề bù)

nên \(\widehat{DAB}+\widehat{BAF}=180^0\)

=>\(\widehat{DAF}=180^0\)

=>D,A,F thẳng hàng

b: ta có: \(\widehat{BAC}+\widehat{BAE}=\widehat{EAC}\)

=>\(\widehat{EAC}=90^0+90^0=180^0\)

=>E,A,C thẳng hàng

Xét ΔABE vuông tại A và ΔAKC vuông tại A có

\(\dfrac{AB}{AK}=\dfrac{AE}{AC}\)

Do đó: ΔABE đồng dạng với ΔAKC

=>\(\widehat{ABE}=\widehat{AKC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BE//KC

Ta có: BK=BA+AK

EC=EA+AC

mà AK=AC và BA=EA

nên BK=EC

Xét tứ giác BEKC có BE//KC và BK=EC

nên BEKC là hình thang cân