Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D I K
a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)
AB // CD (gt) => góc BAC = góc ACD (so le trong)
Xét t/giác ABC và t/giác CDA
có góc ACB = góc DAC (cmt)
AC : chung
góc BAC = góc ACD (cmt)
=> t/giác ABC = t/giác CDA (g.c.g)
b) Ta có : t/giác ABC = t/giác CDA (cmt)
=> AB = CD (hai cạnh tương ứng)
Do AB // CD (gt) => góc ABD = góc BDC (so le trong)
Xét t/giác AMB và t/giác CMD
có góc BAM = góc MCD (cmt)
AB = CD (cmt)
góc ABM = góc BDM (cmt)
=> t/giác AMB = t/giác CMD (g.c.g)
=> AM = MC (hai cạnh tương ứng)
=> M là trung điểm của AC
c) Xét t/giác AMI và t/giác CMK
có góc DAC = góc ACK (cmt)
AM = CM (cmt)
góc IMA = góc CMK (đối đỉnh)
=> t/giác AMI = t/giác CMK (g.c.g)
=> MI = MK (hai cạnh tương ứng)
=> M là trung điểm của IK
Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được
Có hình ko bạn
Nhìn như này loạn quá
Với lại cái đề nó cũng dài quá nữa cơ
Nhìn muốn xỉu luôn ý.
a) Vì AD//BC (gt) \(\Rightarrow\widehat{ADB}=\widehat{CBD}\)(hai góc so le trong)
Vì AB//CD (gt) \(\Rightarrow\widehat{ABD}=\widehat{CDB}\)(hai góc so le trong)
Xét \(\Delta ABD\)và \(\Delta CDB\), ta có: \(\widehat{ADB}=\widehat{CBD}\left(cmt\right);\widehat{ABD}=\widehat{CDB}\left(cmt\right)\); BD chung
\(\Rightarrow\Delta ABD=\Delta CDB\left(g.c.g\right)\)\(\Rightarrow AD=BC\)(hai cạnh tương ứng)
Mặt khác AD//BC \(\Rightarrow\widehat{MAD}=\widehat{MCB}\)(hai góc so le trong)
Xét \(\Delta MAD\)và \(\Delta MCB\)có \(\widehat{MAD}=\widehat{MCB}\left(cmt\right);AD=BC\left(cmt\right);\widehat{MDA}=\widehat{MBC}\left(cmt\right)\)
\(\Rightarrow\Delta MAD=\Delta MCB\left(g.c.g\right)\)\(\Rightarrow MA=MC\)(hai cạnh tương ứng)
Mà A,M,C thẳng hàng \(\Rightarrow\)M là trung điểm của AC (đpcm)
b) Xét \(\Delta AIM\)và \(\Delta CKM\)có \(\widehat{AMI}=\widehat{CMK}\)(hai góc đối đỉnh); \(AM=CM\left(cmt\right);\widehat{MAI}=\widehat{MCK}\left(cmt\right)\)
\(\Rightarrow\Delta AIM=\Delta CKM\left(g.c.g\right)\)\(\Rightarrow MI=MK\)(hai cạnh tương ứng)
Mà I, M, K thẳng hàng \(\Rightarrow\)M là trung điểm của IK. (đpcm)
ừeeargfegregrqe