Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đấy của bài ngay trên. Mình đang vẽ lộn.
GT: AB // CD, AB < CD , I là trung điểm của AB, K là trung điểm của CD , \(\widehat{C}+\widehat{D}=90^0\)
Cần chứng minh \(IK=\frac{CD-AB}{2}\)
Vẽ AD cắt BC tại E.
\(\Delta ECD\)có: \(\widehat{C}+\widehat{D}=90^{^0}\Rightarrow\widehat{E}=90^0\)
Bạn tự chứng minh \(EI=\frac{1}{2}AB,EK=\frac{1}{2}CD\)
Ta có: \(\widehat{IEA}=\widehat{IAE},\widehat{KED}=\widehat{KDE},\widehat{IAE}=\widehat{KDE}\left(AB//CD\right)\)
\(\Rightarrow\widehat{IEA}=\widehat{KED}\)hay \(\widehat{IEA}=\widehat{KEA}\left(A\in ED\right)\)
Mà I và K nằm trên cùng 1 nửa mặt phẳng bờ chứa tia EA
Nên 3 điểm I, E, K thẳng hàng.
\(\Rightarrow IK=EK-EI=\frac{1}{2}CD-\frac{1}{2}AB=\frac{CD-AB}{2}\)
Chúc bạn học tốt.
Bài 1:
Gọi N là trung điểm của HC
Xét tam giác ABC cân tại A ta có:
AM là đường trung tuyến (gt)
=> AM là đường cao của tam giác ABC
=> AM _|_ BC tại M
Xét tam giác HMC ta có:
O là trung điểm của Mh (gt)
N là trung điểm của HC ( cách vẽ)
=> ON là đường trung bình của tam giác HMC
=> ON // MC
Mà AM _|_ MC tại M (cmt)
Nên NO _|_ AM
Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)
=> O là trực tâm của tam giác AMN
=> AO _|_ MN
Xét tam giác BHC ta có:
M là trung điểm của BC (gt)
N là trung điểm của HC (cách vẽ)
=> MN là đường trung bình của tam giác BHC
=> MN // BH
Mà AO _|_ MN (cmt)
Nên AO _|_ BH (đpcm)
LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws