K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BE,BD là hai tia phân giác của hai góc kề bù

=>BE vuông góc BD

CE,CD là hai tia phân giác của hai góc kề bù

=>CE vuông góc CD

Xét tứ giác EBDC có

góc EBD+góc ECD=180 độ

=>EBDC nội tiếp

b: Xét ΔIBE và ΔIDCcó

góc IBE=góc IDC

góc BIE=góc DIC

=>ΔIBE đồng dạng với ΔIDC

=>IB/ID=IE/IC

=>IB*IC=ID*IE

 

15 tháng 5 2022

tham khảo=)

undefined

15 tháng 5 2022

cop

7 tháng 5 2019

A B C D I M E x y

a)   Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên  AE là phân giác góc BAC

Khi đó AE và AD đều là phân giác trong của góc BAC

=> 3 điểm A,E,D thẳng hàng

b)   Có:       ACB+BCx   =180

           => 1/2 ACB  +1/2  BCx =90

           =>  DCB  +   BCE  =90

           =>  DCE                =90

Tương tự  : DBE    =90

Trong tứ giác  BECD   CÓ   DBE +DCE  =90+90=180 

=> TỨ giác BECD nội tiếp

c) theo câu b thì tứ giác BECD nội tiếp nên

  DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)

Xét tam giác DIC và tam giác BIE có :

    DCB=DEB (cmt)

   DIC= BIE ( 2 góc đối đỉnh)

=> tam giác DIC đồng dạng với tam giác BIE

=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)

 => BI *IC= ID*IE

            

9 tháng 5 2019

mình ghi lại câu a nhé

Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A 

=> AE là  phân giác góc A

Vì D  là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC

=> D thuộc đường phân giác góc A

=>AE,AD nhau

=> A,E,D thẳng hàng

7 tháng 5 2016

Câu a mình làm xuống dưới nha =)))

b. Ta có, 2xgóc BCE + 2x góc BCF = 180° ( gt theo tia phân giác )

=> 2.(góc BCE + góc BCF ) = 180° 

<=> góc ECF =  180°/ 2 = 90°

Chứng minh tương tự, có góc EBF = 90°

( từ hai điều trên ) suy ra góc ECF + góc EBF = 180°

=> tức giác BECF nội tiếp đường tròn có tâm là trung điểm của EF.

c, tức giác BECF nội tiếp => góc EBI = góc CIF

                                                  góc EIB = góc CIF ( đối đỉnh )  

                                            ==> tam giác IEB đồng dạng với tam giác ICF

                                                          => BI / IE = IF / IC 

                                                                <=> BI.IC= IF.IE 

a, trong tam giác ABC

có góc xBC = góc BAC + góc ACB   ( góc ngoài tam giác )

=> 1/2 góc xBC = 1/2 góc BAC + 1/2 góc ACB 

     <=> FBI = góc EAC + góc ECA 

             mà EAC + ECA + AEC = 180° 

==>  góc FBI + góc AEC = 180°     * 

          mà  góc FBI = góc FEC ( tức giác BEFC nội tiếp )         **

Từ (*) và (**) suy ra FEC + AEC = 180°

                     => E, F, A  thẳng hàng. 

           

 

7 tháng 5 2016

A, xin lỗi, cái chỗ câu c nè 

tức giác BECF nội tiếp suy ra góc EBI = góc CFI mới đúng  nhé

xin lỗi, mình viết nhầm chỗ đó :(((       

13 tháng 5 2021
Alo blu đen sô
13 tháng 5 2021
Alo bluuu đen sô