K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BDC}\) là hai góc cùng nhìn cạnh BC

Do đó: BCDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AB=AD\cdot AC\)(Đpcm)

25 tháng 4 2022

Viết còn cặc

b) Xét tứ giác BEDC có 

\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)

nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 3 2023

Giải

6 tháng 5 2017

a) Chứng minh tam giác MAB đồng dạng tam giác MFC 

b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)

c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang

d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH

\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH

BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2