Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
O A B D E C H P F N M I
a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)
Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)
Gọi I là tiếp điểm của FN với (O). Ta có:
\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)
Suy ra tứ giác MNCO nội tiếp.
b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp
Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)
Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)
Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.
c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)
Theo hệ thức lượng thì:
\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)
\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)
CM được S,T,E thẳng hàng
Xét tam giác ECT zà tam giác EST có \(\widehat{CET}\left(chung\right),\widehat{ECT}=\widehat{ESC}\)
=>tam giác ECT=tam giác EST(g.g)
=>\(\frac{EC}{ES}=\frac{ET}{EC}=>ET.ES=EC^2\)
xét tam giác EMT zà tam giác ESN có \(\widehat{MET}\left(chung\right),\widehat{EMT}=\widehat{ESN}\)
=> tam giác ECT = tam giác ESN(g.g)
=>\(\frac{EM}{ES}=\frac{ET}{EN}=>ET.ES=EM.EN=EM.EN\\\)
Nên \(EC^2=EM.EN=\left(=ET.ES\right)=\frac{EC}{EN}=\frac{EM}{EC}\)
tam giác ECM = tam giasc ENC (c.g.c)
=>\(\widehat{EMC}=\widehat{ENC}\)
=>\(\widehat{ECD}+\widehat{DCM}=\widehat{NAC}+\widehat{NCA}\)
mà \(\widehat{ECD=\widehat{NAC}}\)
nên \(\widehat{DCM}=\widehat{NCA}\)
ta có \(KL//AB=>\widebat{BK}=\widebat{AL}=>\widehat{DCM}=\widehat{LCA}\)
ta có\(\widehat{NCA}=\widehat{LCA}\left(=\widehat{DCM}\right)\)
=> hai tia CN , CL trùng nhau .zậy C,N,L thẳng hàng